A direct measurement of the universe's expansion history could be made by
observing in real time the evolution of the cosmological redshift of distant
objects. However, this would require measurements of Doppler velocity drifts of
about 1 centimeter per second per year, and astronomical spectrographs have not
yet been calibrated to this tolerance. We demonstrate the first use of a laser
frequency comb for wavelength calibration of an astronomical telescope. Even
with a simple analysis, absolute calibration is achieved with an equivalent
Doppler precision of approximately 9 meters per second at about 1.5 micrometers
- beyond state-of-the-art accuracy. We show that tracking complex, time-varying
systematic effects in the spectrograph and detector system is a particular
advantage of laser frequency comb calibration. This technique promises an
effective means for modeling and removal of such systematic effects to the
accuracy required by future experiments to see direct evidence of the
universe's putative acceleration.Comment: Science, 5th September 2008. 18 pages, 7 figures (7 JPG files),
including Supporting Online Material. Version with higher resolution figures
available at http://astronomy.swin.edu.au/~mmurphy/pub.htm