558 research outputs found

    DNA-binding specificity of rice mariner-like transposases and interactions with Stowaway MITEs

    Get PDF
    Mariner-like elements (MLEs) are DNA transposons found throughout the plant and animal kingdoms. A previous computational survey of the rice (Oryza sativa) genome sequence revealed 34 full length MLEs (Osmars) belonging to 25 distinct families. This survey, which also identified sequence similarities between the Osmar elements and the Stowaway superfamily of MITEs, led to the formulation of a hypothesis whereby Stowaways are mobilized by OSMAR transposases. Here we investigate the DNA-binding activities and specificities of two OSMAR transposases, OSMAR5 and OSMAR10. Like other mariner-like transposases, the OSMARs bind specifically to the terminal inverted repeat (TIR) sequences of their encoding transposons. OSMAR5 binds DNA through a bipartite N-terminal domain containing two functionally separable helix-turn-helix motifs, resembling the paired domain of Tc1-like transposases and PAX transcription factors in metazoans. Furthermore, binding of the OSMARs is not limited to their own TIRs; OSMAR5 transposase can also interact in vitro with TIRs from closely related Osmar elements and with consensus TIRs of several Stowaway families mined from the rice genome sequence. These results provide the first biochemical evidence for a functional relationship between Osmar elements and Stowaway MITEs and lead us to suggest that there is extensive cross-talk among related but distinct transposon families co-existing in a single eukaryote genome

    Elastic Pion Scattering on the Deuteron in a Multiple Scattering Model

    Get PDF
    Pion elastic scattering on deuterium is studied in the KMT multiple scattering approach developed in momentum space. Using a Paris wave function and the same methods and approximations as commonly used in pion scattering on heavier nuclei excellent agreement with differential cross section data is obtained for a wide range of pion energies. Only for Tπ>250T_{\pi}>250 MeV and very backward angles, discrepancies appear that are reminiscent of disagreements in pion scattering on 3^3He, 3^3H, and 4^4He. At low energies the second order corrections have been included. Polarization observables are studied in detail. While tensor analyzing powers are well reproduced, vector analyzing powers exhibit dramatic discrepancies.Comment: 25 pages LATEX and 9 postscript figures in a self-extracting uufile archiv

    The epithelial cholinergic system of the airways

    Get PDF
    Acetylcholine (ACh), a classical transmitter of parasympathetic nerve fibres in the airways, is also synthesized by a large number of non-neuronal cells, including airway surface epithelial cells. Strongest expression of cholinergic traits is observed in neuroendocrine and brush cells but other epithelial cell types—ciliated, basal and secretory—are cholinergic as well. There is cell type-specific expression of the molecular pathways of ACh release, including both the vesicular storage and exocytotic release known from neurons, and transmembrane release from the cytosol via organic cation transporters. The subcellular distribution of the ACh release machineries suggests luminal release from ciliated and secretory cells, and basolateral release from neuroendocrine cells. The scenario as known so far strongly suggests a local auto-/paracrine role of epithelial ACh in regulating various aspects on the innate mucosal defence mechanisms, including mucociliary clearance, regulation of macrophage function and modulation of sensory nerve fibre activity. The proliferative effects of ACh gain importance in recently identified ACh receptor disorders conferring susceptibility to lung cancer. The cell type-specific molecular diversity of the epithelial ACh synthesis and release machinery implies that it is differently regulated than neuronal ACh release and can be specifically targeted by appropriate drugs

    High Potential of a Transposon mPing as a Marker System in japonica × japonica Cross in Rice

    Get PDF
    Although quantitative traits loci (QTL) analysis has been widely performed to isolate agronomically important genes, it has been difficult to obtain molecular markers between individuals with similar phenotypes (assortative mating). Recently, the miniature inverted-repeat transposable element mPing was shown to be active in the japonica strain Gimbozu EG4 where it had accumulated more than 1000 copies. In contrast, most other japonicas, including Nipponbare, have 50 or fewer mPing insertions in their genome. In this study we have exploited the polymorphism of mPing insertion sites to generate 150 PCR markers in a cross between the closely related japonicas, Nipponbare × Gimbozu (EG4). These new markers were distributed in genic regions of the whole genome and showed significantly higher polymorphism (150 of 183) than all other molecular markers tested including short sequence repeat markers (46 of 661). In addition, we performed QTL analysis with these markers using recombinant inbred lines derived from Nipponbare × Gimbozu EG4, and successfully mapped a locus involved in heading date on the short arm of chromosome 6. Moreover, we could easily map two novel loci involved in the culm length on the short arms of chromosomes 3 and 10

    Modulating signaling networks by CRISPR/Cas9-mediated transposable element insertion

    Get PDF
    In a recent past, transposable elements (TEs) were referred to as selfish genetic components only capable of copying themselves with the aim of increasing the odds of being inherited. Nonetheless, TEs have been initially proposed as positive control elements acting in synergy with the host. Nowadays, it is well known that TE movement into host genome comprises an important evolutionary mechanism capable of increasing the adaptive fitness. As insights into TE functioning are increasing day to day, the manipulation of transposition has raised an interesting possibility of setting the host functions, although the lack of appropriate genome engineering tools has unpaved it. Fortunately, the emergence of genome editing technologies based on programmable nucleases, and especially the arrival of a multipurpose RNA-guided Cas9 endonuclease system, has made it possible to reconsider this challenge. For such purpose, a particular type of transposons referred to as miniature inverted-repeat transposable elements (MITEs) has shown a series of interesting characteristics for designing functional drivers. Here, recent insights into MITE elements and versatile RNA-guided CRISPR/Cas9 genome engineering system are given to understand how to deploy the potential of TEs for control of the host transcriptional activity.Fil: Vaschetto, Luis Maria Benjamin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Cátedra de Diversidad Animal I; Argentin

    O FARMACÊUTICO NA ESTRATÉGIA SAÚDE DA FAMÍLIA: UM RELATO DE EXPERIÊNCIA NA RESIDÊNCIA MULTIPROFISSIONAL

    Get PDF
    A assistência farmacêutica envolve várias dimensões, dentre as quais se podem destacar: estrutura, capacidade de aquisição, acessibilidade geográfica e utilização adequada de recursos. Assim, tem-se por objetivo inserir o profissional farmacêutico no âmbito da Atenção Primária, através das práticas desenvolvidas na Estratégia Saúde da Família (ESF). Além de desenvolver ações sistemáticas sobre as atividades vinculadas ao setor da farmácia, referentes a dispensação e outras atividades da assistência farmacêutica repercutindo assim, em um bom gerenciamento, incidindo em diminuição de custos para o municípi

    O FARMACÊUTICO NA ESTRATÉGIA SAÚDE DA FAMÍLIA: UM RELATO DE EXPERIÊNCIA NA RESIDÊNCIA MULTIPROFISSIONAL

    Get PDF
    A assistência farmacêutica envolve várias dimensões, dentre as quais se podem destacar: estrutura, capacidade de aquisição, acessibilidade geográfica e utilização adequada de recursos. Assim, tem-se por objetivo inserir o profissional farmacêutico no âmbito da Atenção Primária, através das práticas desenvolvidas na Estratégia Saúde da Família (ESF). Além de desenvolver ações sistemáticas sobre as atividades vinculadas ao setor da farmácia, referentes a dispensação e outras atividades da assistência farmacêutica repercutindo assim, em um bom gerenciamento, incidindo em diminuição de custos para o municípi

    Prediction of Extracellular Proteases of the Human Pathogen Helicobacter pylori Reveals Proteolytic Activity of the Hp1018/19 Protein HtrA

    Get PDF
    Exported proteases of Helicobacter pylori (H. pylori) are potentially involved in pathogen-associated disorders leading to gastric inflammation and neoplasia. By comprehensive sequence screening of the H. pylori proteome for predicted secreted proteases, we retrieved several candidate genes. We detected caseinolytic activities of several such proteases, which are released independently from the H. pylori type IV secretion system encoded by the cag pathogenicity island (cagPAI). Among these, we found the predicted serine protease HtrA (Hp1019), which was previously identified in the bacterial secretome of H. pylori. Importantly, we further found that the H. pylori genes hp1018 and hp1019 represent a single gene likely coding for an exported protein. Here, we directly verified proteolytic activity of HtrA in vitro and identified the HtrA protease in zymograms by mass spectrometry. Overexpressed and purified HtrA exhibited pronounced proteolytic activity, which is inactivated after mutation of Ser205 to alanine in the predicted active center of HtrA. These data demonstrate that H. pylori secretes HtrA as an active protease, which might represent a novel candidate target for therapeutic intervention strategies

    A Highly Conserved, Small LTR Retrotransposon that Preferentially Targets Genes in Grass Genomes

    Get PDF
    LTR retrotransposons are often the most abundant components of plant genomes and can impact gene and genome evolution. Most reported LTR retrotransposons are large elements (>4 kb) and are most often found in heterochromatic (gene poor) regions. We report the smallest LTR retrotransposon found to date, only 292 bp. The element is found in rice, maize, sorghum and other grass genomes, which indicates that it was present in the ancestor of grass species, at least 50–80 MYA. Estimated insertion times, comparisons between sequenced rice lines, and mRNA data indicate that this element may still be active in some genomes. Unlike other LTR retrotransposons, the small LTR retrotransposons (SMARTs) are distributed throughout the genomes and are often located within or near genes with insertion patterns similar to MITEs (miniature inverted repeat transposable elements). Our data suggests that insertions of SMARTs into or near genes can, in a few instances, alter both gene structures and gene expression. Further evidence for a role in regulating gene expression, SMART-specific small RNAs (sRNAs) were identified that may be involved in gene regulation. Thus, SMARTs may have played an important role in genome evolution and genic innovation and may provide a valuable tool for gene tagging systems in grass
    corecore