1,252 research outputs found

    Towards an understanding of the Of?p star HD 191612: optical spectroscopy

    Full text link
    We present extensive optical spectroscopy of the early-type magnetic star HD 191612 (O6.5f?pe-O8fp). The Balmer and HeI lines show strongly variable emission which is highly reproducible on a well-determined 538-d period. Metal lines and HeII absorptions (including many selective emission lines but excluding He II 4686A emission) are essentially constant in line strength, but are variable in velocity, establishing a double-lined binary orbit with P(orb) = 1542d, e=0.45. We conduct a model-atmosphere analysis of the primary, and find that the system is consistent with a O8: giant with a B1: main-sequence secondary. Since the periodic 538-d changes are unrelated to orbital motion, rotational modulation of a magnetically constrained plasma is strongly favoured as the most likely underlying `clock'. An upper limit on the equatorial rotation is consistent with this hypothesis, but is too weak to provide a strong constraint.Comment: Accepted for MNRA

    The Canberra Commission: Paths Followed, Paths Ahead

    Get PDF
    Despite its inauspicious start and virtual abandonment by the new Coalition government in Australia, the Canberra Commission on the Elimination of Nuclear Weapons continued to attract international attention in arms control and disarmament circles

    Cognitive‐behavioral therapy in the time of coronavirus : clinician tips for working with eating disorders via telehealth when face‐to‐face meetings are not possible

    Get PDF
    Objective The coronavirus pandemic has led to a dramatically different way of working for many therapists working with eating disorders, where telehealth has suddenly become the norm. However, many clinicians feel ill equipped to deliver therapy via telehealth, while adhering to evidence‐based interventions. This article draws together clinician experiences of the issues that should be attended to, and how to address them within a telehealth framework. Method Seventy clinical colleagues of the authors were emailed and invited to share their concerns online about how to deliver cognitive‐behavioral therapy for eating disorders (CBT‐ED) via telehealth, and how to adapt clinical practice to deal with the problems that they and others had encountered. After 96 hr, all the suggestions that had been shared by 22 clinicians were collated to provide timely advice for other clinicians. Results A range of themes emerged from the online discussion. A large proportion were general clinical and practical domains (patient and therapist concerns about telehealth; technical issues in implementing telehealth; changes in the environment), but there were also specific considerations and clinical recommendations about the delivery of CBT‐ED methods. Discussion Through interaction and sharing of ideas, clinicians across the world produced a substantial number of recommendations about how to use telehealth to work with people with eating disorders while remaining on track with evidence‐based practice. These are shared to assist clinicians over the period of changed practice

    Direct activation of KCC2 arrests benzodiazepine refractory status epilepticus and limits the subsequent neuronal injury in mice

    Get PDF
    Hyperpolarizing GABAAR currents, the unitary events that underlie synaptic inhibition, are dependent upon efficient Cl− extrusion, a process that is facilitated by the neuronal specific K+/Cl− co-transporter KCC2. Its activity is also a determinant of the anticonvulsant efficacy of the canonical GABAAR-positive allosteric: benzodiazepines (BDZs). Compromised KCC2 activity is implicated in the pathophysiology of status epilepticus (SE), a medical emergency that rapidly becomes refractory to BDZ (BDZ-RSE). Here, we have identified small molecules that directly bind to and activate KCC2, which leads to reduced neuronal Cl− accumulation and excitability. KCC2 activation does not induce any overt effects on behavior but prevents the development of and terminates ongoing BDZ-RSE. In addition, KCC2 activation reduces neuronal cell death following BDZ-RSE. Collectively, these findings demonstrate that KCC2 activation is a promising strategy to terminate BDZ-resistant seizures and limit the associated neuronal injury

    The next detectors for gravitational wave astronomy

    Full text link
    This paper focuses on the next detectors for gravitational wave astronomy which will be required after the current ground based detectors have completed their initial observations, and probably achieved the first direct detection of gravitational waves. The next detectors will need to have greater sensitivity, while also enabling the world array of detectors to have improved angular resolution to allow localisation of signal sources. Sect. 1 of this paper begins by reviewing proposals for the next ground based detectors, and presents an analysis of the sensitivity of an 8 km armlength detector, which is proposed as a safe and cost-effective means to attain a 4-fold improvement in sensitivity. The scientific benefits of creating a pair of such detectors in China and Australia is emphasised. Sect. 2 of this paper discusses the high performance suspension systems for test masses that will be an essential component for future detectors, while sect. 3 discusses solutions to the problem of Newtonian noise which arise from fluctuations in gravity gradient forces acting on test masses. Such gravitational perturbations cannot be shielded, and set limits to low frequency sensitivity unless measured and suppressed. Sects. 4 and 5 address critical operational technologies that will be ongoing issues in future detectors. Sect. 4 addresses the design of thermal compensation systems needed in all high optical power interferometers operating at room temperature. Parametric instability control is addressed in sect. 5. Only recently proven to occur in Advanced LIGO, parametric instability phenomenon brings both risks and opportunities for future detectors. The path to future enhancements of detectors will come from quantum measurement technologies. Sect. 6 focuses on the use of optomechanical devices for obtaining enhanced sensitivity, while sect. 7 reviews a range of quantum measurement options

    Pedestal bifurcation and resonant field penetration at the threshold of edge-localized mode suppression in the DIII-D tokamak

    No full text
    Rapid bifurcations in the plasma response to slowly varying n=2 magnetic fields are observed as the plasma transitions into and out of edge-localized mode (ELM) suppression. The rapid transition to ELM suppression is characterized by an increase in the toroidal rotation and a reduction in the electron pressure gradient at the top of the pedestal that reduces the perpendicular electron flow there to near zero. These events occur simultaneously with an increase in the inner-wall magnetic response. These observations are consistent with strong resonant field penetration of n=2 fields at the onset of ELM suppression, based on extended MHD simulations using measured plasma profiles. Spontaneous transitions into (and out of) ELM suppression with a static applied n=2 field indicate competing mechanisms of screening and penetration of resonant fields near threshold conditions. Magnetic measurements reveal evidence for the unlocking and rotation of tearinglike structures as the plasma transitions out of ELM suppression.This work is supported by the U.S. Department of Energy under Awards No. DE-FC02-04ER54698, No. DE-AC02-09CH11466, No. DE-FG02-07ER54917, No. DE-FG02-89ER53296, No. DE-FG02-08ER54999, No. DE-FG02-08ER54984, No. DE-AC05-00OR22725, No. DE-FG02-86ER53218, and No. DE-FG02- 92ER54139

    Edge localized mode control with an edge resonant magnetic perturbation

    No full text
    A low amplitude (δbr∕BT=1 part in 5000) edge resonantmagnetic field perturbation with toroidalmode number n=3 and poloidal mode numbers between 8 and 15 has been used to suppress most large type I edge localized modes(ELMs) without degrading core plasma confinement. ELMs have been suppressed for periods of up to 8.6 energy confinement times when the edge safety factor q95 is between 3.5 and 4. The large ELMs are replaced by packets of events (possibly type II ELMs) with small amplitude, narrow radial extent, and a higher level of magnetic field and density fluctuations, creating a duty cycle with long “active” intervals of high transport and short “quiet” intervals of low transport. The increased transport associated with these events is less impulsive and slows the recovery of the pedestal profiles to the values reached just before the large ELMs without the n=3 perturbation. Changing the toroidal phase of the perturbation by 60° with respect to the best ELM suppression case reduces the ELM amplitude and frequency by factors of 2–3 in the divertor, produces a more stochastic response in the H-mode pedestal profiles, and displays similar increases in small scale events, although significant numbers of large ELMs survive. In contrast to the best ELM suppression case where the type I ELMs are also suppressed on the outboard midplane, the midplane recycling increases until individual ELMs are no longer discernable. The ELM response depends on the toroidal phase of the applied perturbation because intrinsic error fields make the target plasma nonaxisymmetric, and suggests that at least some of the variation in ELM behavior in a single device or among different devices is due to differences in the intrinsic error fields in these devices. These results indicate that ELMs can be suppressed by small edge resonantmagnetic field perturbations. Extrapolation to next-step burning plasma devices will require extending the regime of operation to lower collisionality and understanding the physical mechanism responsible for the ELM suppression.This work was funded by the U.S. Department of Energy under Grant Nos. DE-FC02-04ER54698, DE-FG02- 04ER54758, DE-FG03-01ER54615, W-7405-ENG-48, DEFG03-96ER54373, DE-FG02-89ER53297, DE-AC05- 00OR22725, and DE-AC04-94AL85000

    Objective evaluation of the quality of movement in daily life after stroke

    Get PDF
    Stroke survivors are commonly left with disabilities that impair activities of daily living. The main objective of their rehabilitation program is to maximize the functional performance at home. However, the actual performance of patients in their home environment is unknown. Therefore, objective evaluation of daily life activities of stroke survivors in their physical interaction with the environment is essential for optimal guidance of rehabilitation therapy. Monitoring daily life movements could be very challenging, as it may result in large amounts of data, without any context. Therefore, suitable metrics are necessary to quantify relevant aspects of movement performance during daily life. The objective of this study is to develop data processing methods, which can be used to process movement data into relevant metrics for the evaluation of intra-patient differences in quality of movements in a daily life setting. Based on an iterative requirement process, functional and technical requirements were formulated. These were prioritized resulting in a coherent set of metrics. An activity monitor was developed to give context to captured movement data at home. Finally, the metrics will be demonstrated in two stroke participants during and after their rehabilitation phases. By using the final set of metrics, quality of movement can be evaluated in a daily life setting. As example to demonstrate potential of presented methods, data of two stroke patients were successfully analyzed. Differences between in-clinic measurements and measurements during daily life are observed by applying the presented metrics and visualization methods. Heel height profiles show intra-patient differences in height, distance, stride profile, and variability between strides during a 10-m walk test in the clinic and walking at home. Differences in distance and stride profile between both feet were larger at home, than in clinic. For the upper extremities, the participant was able to reach further away from the pelvis and cover a larger area. Presented methods can be used for the objective evaluation of intra-patient differences in movement quality between in-clinic and daily life measurements. Any observed progression or deterioration of movement quality could be used to decide on continuing, stopping, or adjusting rehabilitation programs

    Gravitational Waves From Known Pulsars: Results From The Initial Detector Era

    Get PDF
    We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyAustralian Research CouncilInternational Science Linkages program of the Commonwealth of AustraliaCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Economia y CompetitividadConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsNetherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFOCUS Programme of Foundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationOTKA of HungaryLyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of Ontario through the Ministry of Economic Development and InnovationNational Science and Engineering Research Council CanadaCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationAstronom
    corecore