24 research outputs found

    American palm ethnomedicine: A meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many recent papers have documented the phytochemical and pharmacological bases for the use of palms (<it>Arecaceae</it>) in ethnomedicine. Early publications were based almost entirely on interviews that solicited local knowledge. More recently, ethnobotanically guided searches for new medicinal plants have proven more successful than random sampling for identifying plants that contain biodynamic ingredients. However, limited laboratory time and the high cost of clinical trials make it difficult to test all potential medicinal plants in the search for new drug candidates. The purpose of this study was to summarize and analyze previous studies on the medicinal uses of American palms in order to narrow down the search for new palm-derived medicines.</p> <p>Methods</p> <p>Relevant literature was surveyed and data was extracted and organized into medicinal use categories. We focused on more recent literature than that considered in a review published 25 years ago. We included phytochemical and pharmacological research that explored the importance of American palms in ethnomedicine.</p> <p>Results</p> <p>Of 730 species of American palms, we found evidence that 106 species had known medicinal uses, ranging from treatments for diabetes and leishmaniasis to prostatic hyperplasia. Thus, the number of American palm species with known uses had increased from 48 to 106 over the last quarter of a century. Furthermore, the pharmacological bases for many of the effects are now understood.</p> <p>Conclusions</p> <p>Palms are important in American ethnomedicine. Some, like <it>Serenoa repens </it>and <it>Roystonea regia</it>, are the sources of drugs that have been approved for medicinal uses. In contrast, recent ethnopharmacological studies suggested that many of the reported uses of several other palms do not appear to have a strong physiological basis. This study has provided a useful assessment of the ethnobotanical and pharmacological data available on palms.</p

    Composition, diversity and structure of vascular epiphytes in two contrasting Central Amazonian floodplain ecosystems

    Get PDF
    Research focusing on assemblages of vascular epiphytes in the Amazon are scarce. This is especially true for Amazonian floodplain forests, for which only two previous studies have been published. We compared composition, richness and structure of epiphyte assemblages in white-water and black-water floodplains (várzea and igapó) in Central Amazonia in order to close knowledge gaps concerning the distribution and richness of epiphytes. We established sixteen 25x25 m plots in each forest type, and counted and identified all species of vascular epiphytes occurring on trees with a diameter at breast height (DBH) ≥10 cm. We observed a clear distinction in epiphytic species composition (r2=0.83, p=0.001) and diversity (t=3.24, P=0.003) between the two environments, with 61.5 % of species being restricted to várzea, 22.9 % restricted to igapó and only 15.6 % common to both ecosystems. The floodplains were also structurally different for the most abundant species and those with the highest Epiphytic Importance Value (IVe). The diversity of trees did not influence the epiphyte diversity in either ecosystem. The forests were found to differ in the composition, diversity and structure of their epiphytic assemblages, which must be taken into account when designing conservation action plans for these ecosystems and for their vascular epiphytes

    Palm species richness, latitudinal gradients, sampling effort, and deforestation in the Amazon region

    No full text
    ABSTRACT Palms are most diverse in warm and humid regions near the equator. Though palms remain relatively well conserved, they are under increasing pressure from deforestation. Here, we analyze patterns of palm species richness relative to latitudinal gradient, sampling effort, and deforestation in the Amazon, and compare patterns of richness and floristic similarity among Amazonian sub-regions. We built a database of 17,310 records for 177 species. The areas with the greatest richness were in the western, central and northeastern Amazon, principally at latitudes 0-5ºS. Species richness and the number of records were highly correlated (R2=0.76, P2000 km2) were found in the southern and eastern Amazon of Brazil, which coincide with low richness and gaps in records. Similarity analyzes resulted in two groups of sub-regions: the first included the Amazon s.s., the Andes and the Guiana, while the second included the Plateau and Gurupi. We conclude that the highest species richness is at low latitudes, and observed richness is affected by sampling effort and is vulnerable to deforestation. Therefore, areas with low species richness, especially areas with data deficiency, need to be further studied for a better understanding of their patterns of diversity and richness
    corecore