304 research outputs found
Learner and Teacher Roles in the Treatment of Oral Error in Group Work
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69127/2/10.1177_003368828001100204.pd
The Relativistic Factor in the Orbital Dynamics of Point Masses
There is a growing population of relativistically relevant minor bodies in
the Solar System and a growing population of massive extrasolar planets with
orbits very close to the central star where relativistic effects should have
some signature. Our purpose is to review how general relativity affects the
orbital dynamics of the planetary systems and to define a suitable relativistic
correction for Solar System orbital studies when only point masses are
considered. Using relativistic formulae for the N body problem suited for a
planetary system given in the literature we present a series of numerical
orbital integrations designed to test the relevance of the effects due to the
general theory of relativity in the case of our Solar System. Comparison
between different algorithms for accounting for the relativistic corrections
are performed. Relativistic effects generated by the Sun or by the central star
are the most relevant ones and produce evident modifications in the secular
dynamics of the inner Solar System. The Kozai mechanism, for example, is
modified due to the relativistic effects on the argument of the perihelion.
Relativistic effects generated by planets instead are of very low relevance but
detectable in numerical simulations
An Overview of the 13:8 Mean Motion Resonance between Venus and Earth
It is known since the seminal study of Laskar (1989) that the inner planetary
system is chaotic with respect to its orbits and even escapes are not
impossible, although in time scales of billions of years. The aim of this
investigation is to locate the orbits of Venus and Earth in phase space,
respectively to see how close their orbits are to chaotic motion which would
lead to unstable orbits for the inner planets on much shorter time scales.
Therefore we did numerical experiments in different dynamical models with
different initial conditions -- on one hand the couple Venus-Earth was set
close to different mean motion resonances (MMR), and on the other hand Venus'
orbital eccentricity (or inclination) was set to values as large as e = 0.36 (i
= 40deg). The couple Venus-Earth is almost exactly in the 13:8 mean motion
resonance. The stronger acting 8:5 MMR inside, and the 5:3 MMR outside the 13:8
resonance are within a small shift in the Earth's semimajor axis (only 1.5
percent). Especially Mercury is strongly affected by relatively small changes
in eccentricity and/or inclination of Venus in these resonances. Even escapes
for the innermost planet are possible which may happen quite rapidly.Comment: 14 pages, 11 figures, submitted to CMD
The quest for the solar g modes
Solar gravity modes (or g modes) -- oscillations of the solar interior for
which buoyancy acts as the restoring force -- have the potential to provide
unprecedented inference on the structure and dynamics of the solar core,
inference that is not possible with the well observed acoustic modes (or p
modes). The high amplitude of the g-mode eigenfunctions in the core and the
evanesence of the modes in the convection zone make the modes particularly
sensitive to the physical and dynamical conditions in the core. Owing to the
existence of the convection zone, the g modes have very low amplitudes at
photospheric levels, which makes the modes extremely hard to detect. In this
paper, we review the current state of play regarding attempts to detect g
modes. We review the theory of g modes, including theoretical estimation of the
g-mode frequencies, amplitudes and damping rates. Then we go on to discuss the
techniques that have been used to try to detect g modes. We review results in
the literature, and finish by looking to the future, and the potential advances
that can be made -- from both data and data-analysis perspectives -- to give
unambiguous detections of individual g modes. The review ends by concluding
that, at the time of writing, there is indeed a consensus amongst the authors
that there is currently no undisputed detection of solar g modes.Comment: 71 pages, 18 figures, accepted by Astronomy and Astrophysics Revie
ModelCIF: An Extension of PDBx/mmCIF Data Representation for Computed Structure Models
ModelCIF (github.com/ihmwg/ModelCIF) is a data information framework developed for and by computational structural biologists to enable delivery of Findable, Accessible, Interoperable, and Reusable (FAIR) data to users worldwide. ModelCIF describes the specific set of attributes and metadata associated with macromolecular structures modeled by solely computational methods and provides an extensible data representation for deposition, archiving, and public dissemination of predicted three-dimensional (3D) models of macromolecules. It is an extension of the Protein Data Bank Exchange / macromolecular Crystallographic Information Framework (PDBx/mmCIF), which is the global data standard for representing experimentally-determined 3D structures of macromolecules and associated metadata. The PDBx/mmCIF framework and its extensions (e.g., ModelCIF) are managed by the Worldwide Protein Data Bank partnership (wwPDB, wwpdb.org) in collaboration with relevant community stakeholders such as the wwPDB ModelCIF Working Group (wwpdb.org/task/modelcif). This semantically rich and extensible data framework for representing computed structure models (CSMs) accelerates the pace of scientific discovery. Herein, we describe the architecture, contents, and governance of ModelCIF, and tools and processes for maintaining and extending the data standard. Community tools and software libraries that support ModelCIF are also described
Is the outer Solar System chaotic?
The existence of chaos in the system of Jovian planets has been in question
for the past 15 years. Various investigators have found Lyapunov times ranging
from about 5 millions years upwards to infinity, with no clear reason for the
discrepancy. In this paper, we resolve the issue. The position of the outer
planets is known to only a few parts in 10 million. We show that, within that
observational uncertainty, there exist Lyapunov timescales in the full range
listed above. Thus, the ``true'' Lyapunov timescale of the outer Solar System
cannot be resolved using current observations.Comment: 8 pages, 2 figure
Clinical sequencing identifies potential actionable alterations in a high rate of urachal and primary bladder adenocarcinomas.
OBJECTIVE
Administration of targeted therapies provides a promising treatment strategy for urachal adenocarcinoma (UrC) or primary bladder adenocarcinoma (PBAC); however, the selection of appropriate drugs remains difficult. Here, we aimed to establish a routine compatible methodological pipeline for the identification of the most important therapeutic targets and potentially effective drugs for UrC and PBAC.
METHODS
Next-generation sequencing, using a 161 cancer driver gene panel, was performed on 41 UrC and 13 PBAC samples. Clinically relevant alterations were filtered, and therapeutic interpretation was performed by in silico evaluation of drug-gene interactions.
RESULTS
After data processing, 45/54 samples passed the quality control. Sequencing analysis revealed 191 pathogenic mutations in 68 genes. The most frequent gain-of-function mutations in UrC were found in KRAS (33%), and MYC (15%), while in PBAC KRAS (25%), MYC (25%), FLT3 (17%) and TERT (17%) were recurrently affected. The most frequently affected pathways were the cell cycle regulation, and the DNA damage control pathway. Actionable mutations with at least one available approved drug were identified in 31/33 (94%) UrC and 8/12 (67%) PBAC patients.
CONCLUSIONS
In this study, we developed a data-processing pipeline for the detection and therapeutic interpretation of genetic alterations in two rare cancers. Our analyses revealed actionable mutations in a high rate of cases, suggesting that this approach is a potentially feasible strategy for both UrC and PBAC treatments
Roles of IP3R and RyR Ca2+ Channels in Endoplasmic Reticulum Stress and β-Cell Death
OBJECTIVE—Endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of diabetes, but the roles of specific ER Ca2+ release channels in the ER stress–associated apoptosis pathway remain unknown. Here, we examined the effects of stimulating or inhibiting the ER-resident inositol trisphosphate receptors (IP3Rs) and the ryanodine receptors (RyRs) on the induction of β-cell ER stress and apoptosis
- …