3,471 research outputs found

    Designing a novel heterostructure AgInS<sub>2</sub>@MIL-101(Cr) photocatalyst from PET plastic waste for tetracycline degradation

    Get PDF
    Semiconductor-containing porous materials with a well-defined structure could be unique scaffolds for carrying out selective organic transformations driven by visible light. We herein introduce for the first time a heterostructure of silver indium sulfide (AgInS(2)) ternary chalcogenide and a highly porous MIL-101(Cr) metal–organic framework (MOF) synthesised from polyethylene terephthalate plastic waste. Our results demonstrate that AgInS(2) nanoparticles were uniformly attached to each lattice plane of the octahedral MIL-101(Cr) structure, resulting in a nanocomposite with a high distribution of semiconductors in a porous media. We also demonstrate that the nanocomposite with up to 40% of AgInS(2) doping exhibited excellent catalytic activity for tetracycline degradation under visible light irradiation (∼99% tetracycline degraded after 4 h) and predominantly maintained its performance after five cycles. These results could promote a new material circularity pathway to develop new semiconductors that can be used to protect water from further pollution

    Universality in odd-even harmonic generation and application in terahertz waveform sampling

    Full text link
    Odd-even harmonics emitted from a laser-target system imprint rich, subtle information characterizing the system's dynamical asymmetry, which is desirable to decipher. In this Letter, we discover a simple universal relation between the odd-even harmonics and the asymmetry of the THz-assisted laser-atomic system -- atoms in a fundamental mid-IR laser pulse combined with a THz laser. First, we demonstrate numerically and then analytically formulize the harmonic even-to-odd ratio as a function of the THz electric field, the source of the system's asymmetry. Notably, we suggest a scaling that makes the obtained rule universal, independent of the parameters of both the fundamental pulse and atomic target. This universality facilitates us to propose a general pump-probe scheme for THz waveform sampling from the even-to-odd ratio, measurable within a conventional compact setup

    Extreme temperature impairs growth and productivity in a common tropical marine copepod

    Get PDF
    Abstract Shallow, tropical marine ecosystems provide essential ecosystem goods and services, but it is unknown how these ecosystems will respond to the increased exposure to the temperature extremes that are likely to become more common as climate change progresses. To address this issue, we tracked the fitness and productivity of a key zooplankton species, the copepod Pseudodiaptomus annandalei, acclimated at two temperatures (30 and 34 °C) over three generations. 30 °C is the mean temperature in the shallow water of the coastal regions in Southeast Asia, while 34 °C simulated a temperature extreme that occurs frequently during the summer period. For each generation, we measured the size at maturity and reproductive success of individuals. In all three generations, we found strong negative effects of warming on all measured fitness-related parameters, including prolonged development time, reduced size at maturity, smaller clutch sizes, lower hatching success, and reduced naupliar production. Our results suggest that P. annandalei are already exposed to temperatures that exceed their upper thermal optimum. Increased exposure to extreme temperatures may reduce the abundance of these tropical marine copepods, and thus reduce the availability of resources to higher trophic levels

    Refining Long Short-Term Memory Neural Network Input Parameters for Enhanced Solar Power Forecasting

    Get PDF
    This article presents a research approach to enhancing the quality of short-term power output forecasting models for photovoltaic plants using a Long Short-Term Memory (LSTM) recurrent neural network. Typically, time-related indicators are used as inputs for forecasting models of PV generators. However, this study proposes replacing the time-related inputs with clear sky solar irradiance at the specific location of the power plant. This feature represents the maximum potential solar radiation that can be received at that particular location on Earth. The Ineichen/Perez model is then employed to calculate the solar irradiance. To evaluate the effectiveness of this approach, the forecasting model incorporating this new input was trained and the results were compared with those obtained from previously published models. The results show a reduction in the Mean Absolute Percentage Error (MAPE) from 3.491% to 2.766%, indicating a 24% improvement. Additionally, the Root Mean Square Error (RMSE) decreased by approximately 0.991 MW, resulting in a 45% improvement. These results demonstrate that this approach is an effective solution for enhancing the accuracy of solar power output forecasting while reducing the number of input variables

    The role of mothers-in-law in antenatal care decision-making in Nepal: a qualitative study

    Get PDF
    Background Antenatal care (ANC) has been recognised as a way to improve health outcomes for pregnant women and their babies. However, only 29% of pregnant women receive the recommended four antenatal visits in Nepal but reasons for such low utilisation are poorly understood. As in many countries of South Asia, mothers-in-law play a crucial role in the decisions around accessing health care facilities and providers. This paper aims to explore the mother-in-law’s role in (a) her daughter-in-law’s ANC uptake; and (b) the decision-making process about using ANC services in Nepal. Methods In-depth interviews were conducted with 30 purposively selected antenatal or postnatal mothers (half users, half non-users of ANC), 10 husbands and 10 mothers-in-law in two different (urban and rural) communities. Results Our findings suggest that mothers-in-law sometime have a positive influence, for example when encouraging women to seek ANC, but more often it is negative. Like many rural women of their generation, all mothers-in-law in this study were illiterate and most had not used ANC themselves. The main factors leading mothers-in-law not to support/ encourage ANC check ups were expectations regarding pregnant women fulfilling their household duties, perceptions that ANC was not beneficial based largely on their own past experiences, the scarcity of resources under their control and power relations between mothers-in-law and daughters-in-law. Individual knowledge and social class of the mothers-in-law of users and non-users differed significantly, which is likely to have had an effect on their perceptions of the benefits of ANC. Conclusion Mothers-in-law have a strong influence on the uptake of ANC in Nepal. Understanding their role is important if we are to design and target effective community-based health promotion interventions. Health promotion and educational interventions to improve the use of ANC should target women, husbands and family members, particularly mothers-in-law where they control access to family resources

    The electronic structure of amorphous silica: A numerical study

    Full text link
    We present a computational study of the electronic properties of amorphous SiO2. The ionic configurations used are the ones generated by an earlier molecular dynamics simulations in which the system was cooled with different cooling rates from the liquid state to a glass, thus giving access to glass-like configurations with different degrees of disorder [Phys. Rev. B 54, 15808 (1996)]. The electronic structure is described by a tight-binding Hamiltonian. We study the influence of the degree of disorder on the density of states, the localization properties, the optical absorption, the nature of defects within the mobility gap, and on the fluctuations of the Madelung potential, where the disorder manifests itself most prominently. The experimentally observed mismatch between a photoconductivity threshold of 9 eV and the onset of the optical absorption around 7 eV is interpreted by the picture of eigenstates localized by potential energy fluctuations in a mobility gap of approximately 9 eV and a density of states that exhibits valence and conduction band tails which are, even in the absence of defects, deeply located within the former band gap.Comment: 21 pages of Latex, 5 eps figure

    Human Umbilical Cord Mesenchymal Stem Cells for Severe Neurological Sequelae due to Anti-N-Methyl-d-Aspartate Receptor Encephalitis: First Case Report

    Get PDF
    Anti-N-methyl-d-aspartate (NMDA) receptor encephalitis is caused by altered patient immune reactions. This study reports the first patient with severe neurologic sequelae after NMDA receptor encephalitis treated with allogeneic umbilical cord–derived mesenchymal stem/stromal cells (UC-MSCs). A 5-year-old girl was diagnosed with NMDA receptor encephalitis and treated with immunosuppressive medicaments and intravenous immunoglobulin (IVIG). Despite intensive therapy, the patient’s condition worsened so that allogenic UC-MSC therapy was contemplated. The patient received three intrathecal infusions of xeno- and serum-free cultured UC-MSCs at a dose of 106 cells/kg. At baseline and after each UC-MSC administration, the patient was examined by the German Coma Recovery Scale (CRS), the Gross Motor Function Classification System (GMFCS), the Gross Motor Function Measure–88 (GMFM-88), the Manual Ability Classification System (MACS), the Modified Ashworth Scale, and the Denver II test. Before cell therapy, she was in a permanent vegetative state with diffuse cerebral atrophy. Her cognition and motor functions improved progressively after three UC-MSC infusions. At the last visit, she was capable of walking, writing, and counting numbers. Control of urinary and bowel functions was completely recovered. Cerebral atrophy was reduced on brain magnetic resonance imaging (MRI). Overall, the outcomes of this patient suggest a potential cell therapy for autoimmune encephalitis and its neurological consequences
    corecore