154 research outputs found

    Oculomotor Evidence for Top-Down Control following the Initial Saccade

    Get PDF
    The goal of the current study was to investigate how salience-driven and goal-driven processes unfold during visual search over multiple eye movements. Eye movements were recorded while observers searched for a target, which was located on (Experiment 1) or defined as (Experiment 2) a specific orientation singleton. This singleton could either be the most, medium, or least salient element in the display. Results were analyzed as a function of response time separately for initial and second eye movements. Irrespective of the search task, initial saccades elicited shortly after the onset of the search display were primarily salience-driven whereas initial saccades elicited after approximately 250 ms were completely unaffected by salience. Initial saccades were increasingly guided in line with task requirements with increasing response times. Second saccades were completely unaffected by salience and were consistently goal-driven, irrespective of response time. These results suggest that stimulus-salience affects the visual system only briefly after a visual image enters the brain and has no effect thereafter

    Interferometry with Bose-Einstein Condensates in Microgravity

    Full text link
    Atom interferometers covering macroscopic domains of space-time are a spectacular manifestation of the wave nature of matter. Due to their unique coherence properties, Bose-Einstein condensates are ideal sources for an atom interferometer in extended free fall. In this paper we report on the realization of an asymmetric Mach-Zehnder interferometer operated with a Bose-Einstein condensate in microgravity. The resulting interference pattern is similar to the one in the far-field of a double-slit and shows a linear scaling with the time the wave packets expand. We employ delta-kick cooling in order to enhance the signal and extend our atom interferometer. Our experiments demonstrate the high potential of interferometers operated with quantum gases for probing the fundamental concepts of quantum mechanics and general relativity.Comment: 8 pages, 3 figures; 8 pages of supporting materia

    Salience-based selection: attentional capture by distractors less salient than the target

    Get PDF
    Current accounts of attentional capture predict the most salient stimulus to be invariably selected first. However, existing salience and visual search models assume noise in the map computation or selection process. Consequently, they predict the first selection to be stochastically dependent on salience, implying that attention could even be captured first by the second most salient (instead of the most salient) stimulus in the field. Yet, capture by less salient distractors has not been reported and salience-based selection accounts claim that the distractor has to be more salient in order to capture attention. We tested this prediction using an empirical and modeling approach of the visual search distractor paradigm. For the empirical part, we manipulated salience of target and distractor parametrically and measured reaction time interference when a distractor was present compared to absent. Reaction time interference was strongly correlated with distractor salience relative to the target. Moreover, even distractors less salient than the target captured attention, as measured by reaction time interference and oculomotor capture. In the modeling part, we simulated first selection in the distractor paradigm using behavioral measures of salience and considering the time course of selection including noise. We were able to replicate the result pattern we obtained in the empirical part. We conclude that each salience value follows a specific selection time distribution and attentional capture occurs when the selection time distributions of target and distractor overlap. Hence, selection is stochastic in nature and attentional capture occurs with a certain probability depending on relative salience

    A surface-patterned chip as a strong source of ultracold atoms for quantum technologies

    Get PDF
    Laser-cooled atoms are central to modern precision measurements. They are also increasingly important as an enabling technology for experimental cavity quantum electrodynamics, quantum information processing and matter–wave interferometry. Although significant progress has been made in miniaturizing atomic metrological devices, these are limited in accuracy by their use of hot atomic ensembles and buffer gases. Advances have also been made in producing portable apparatus that benefits from the advantages of atoms in the microkelvin regime. However, simplifying atomic cooling and loading using microfabrication technology has proved difficult. In this Letter we address this problem, realizing an atom chip that enables the integration of laser cooling and trapping into a compact apparatus. Our source delivers ten thousand times more atoms than previous magneto-optical traps with microfabricated optics and, for the first time, can reach sub-Doppler temperatures. Moreover, the same chip design offers a simple way to form stable optical lattices. These features, combined with simplicity of fabrication and ease of operation, make these new traps a key advance in the development of cold-atom technology for high-accuracy, portable measurement devices

    Genus- and species-specific identification of mycoplasmas by 16S rRNA amplification

    Get PDF
    Systematic computer alignment of mycoplasmal 16S rRNA sequences allowed the identification of variable regions with both genus- and species-specific sequences. Species-specific sequences of Mycoplasma collis were elucidated by asymmetric amplification and dideoxynucleotide sequencing of variable regions, using primers complementary to conserved regions of 16S rRNA. Primers selected for Mycoplasma pneumoniae, M. hominis, M. fermentans, Ureaplasma urealyticum, M. pulmonis, M. arthritidis, M. neurolyticum, M. muris, and M. collis proved to be species specific in the polymerase chain reaction. The genus-specific primers reacted with all mycoplasmal species investigated as well as with members of the genera Ureaplasma, Spiroplasma, and Acholeplasma. No cross-reaction was observed with members of the closely related genera Streptococcus, Lactobacillus, Bacillus, and Clostridium or with any other microorganism tested. On the basis of the high copy number of rRNA, a highly sensitive polymerase chain reaction assay was developed in which the nucleic acid content equivalent to a single organism could be detected

    Detecting inertial effects with airborne matter-wave interferometry

    Get PDF
    Inertial sensors relying on atom interferometry offer a breakthrough advance in a variety of applications, such as inertial navigation, gravimetry or ground- and space-based tests of fundamental physics. These instruments require a quiet environment to reach their performance and using them outside the laboratory remains a challenge. Here we report the first operation of an airborne matter-wave accelerometer set up aboard a 0g plane and operating during the standard gravity (1g) and microgravity (0g) phases of the flight. At 1g, the sensor can detect inertial effects more than 300 times weaker than the typical acceleration fluctuations of the aircraft. We describe the improvement of the interferometer sensitivity in 0g, which reaches 2 x 10-4 ms-2 / \surdHz with our current setup. We finally discuss the extension of our method to airborne and spaceborne tests of the Universality of free fall with matter waves.Comment: 7 pages, 6 figures. The final version of this article is available in OPEN access (free) from the editor website at http://www.nature.com/ncomms/journal/v2/n9/full/ncomms1479.htm

    Where Do Neurologists Look When Viewing Brain CT Images? An Eye-Tracking Study Involving Stroke Cases

    Get PDF
    The aim of this study was to investigate where neurologists look when they view brain computed tomography (CT) images and to evaluate how they deploy their visual attention by comparing their gaze distribution with saliency maps. Brain CT images showing cerebrovascular accidents were presented to 12 neurologists and 12 control subjects. The subjects' ocular fixation positions were recorded using an eye-tracking device (Eyelink 1000). Heat maps were created based on the eye-fixation patterns of each group and compared between the two groups. The heat maps revealed that the areas on which control subjects frequently fixated often coincided with areas identified as outstanding in saliency maps, while the areas on which neurologists frequently fixated often did not. Dwell time in regions of interest (ROI) was likewise compared between the two groups, revealing that, although dwell time on large lesions was not different between the two groups, dwell time in clinically important areas with low salience was longer in neurologists than in controls. Therefore it appears that neurologists intentionally scan clinically important areas when reading brain CT images showing cerebrovascular accidents. Both neurologists and control subjects used the “bottom-up salience” form of visual attention, although the neurologists more effectively used the “top-down instruction” form

    The costs of switching attentional sets

    Get PDF
    People prioritize those aspects of the visual environment that match their attentional set. In the present study, we investigated whether switching from one attentional set to another is associated with a cost. We asked observers to sequentially saccade toward two color-defined targets, one on the left side of the display, the other on the right, each among a set of heterogeneously colored distractors. The targets were of the same color (no attentional set switch required) or of different colors (switch of attentional sets necessary), with each color consistently tied to a side, to allow observers to maximally prepare for the switch. We found that saccades were less accurate and slower in the switch condition than in the no-switch condition. Furthermore, whenever one of the distractors had the color associated with the other attentional set, a substantial proportion of saccades did not end on the target, but on this distractor. A time course analysis revealed that this distractor preference turned into a target preference after about 250–300 ms, suggesting that this is the time required to switch attentional sets

    Cognitive function and drivers of cognitive impairment in a European and a Korean cohort of people living with HIV

    Get PDF
    Although cognitive impairments are still prevalent in the current antiretroviral therapy era, limited investigations have compared the prevalence of cognitive disorder in people living with HIV (PLWH) and its determinants in different regions and ethnicities. We compared cognitive performance across six domains using comparable batteries in 134 PLWH aged ≥45 years from the COBRA study (Netherlands, UK), and 194 PLWH aged ≥18 years from the NeuroAIDS Project (South Korea). Cognitive scores were standardized and averaged to obtain domain and global T-scores. Associations with global T-scores were evaluated using multivariable regression and the ability of individual tests to detect cognitive impairment (global T-score ≤45) was assessed using the area-under-the-receiver-operating-characteristic curve (AUROC). The median (interquartile range) age of participants was 56 (51, 62) years in COBRA (88% white ethnicity, 93% male) and 45 (37, 52) years in NeuroAIDS (100% Korean ethnicity, 94% male). The rate of cognitive impairment was 18.8% and 18.0%, respectively (p = 0.86). In COBRA, Black-African ethnicity was the factor most strongly associated with cognitive function (11.1 [7.7, 14.5] lower scores vs. white ethnicity, p < 0.01), whereas in NeuroAIDS, age (0.6 [0.1, 1.3] per 10-year, p<0.01) and education (0.7 [0.5, 0.9] per year, p<0.01) were significantly associated with cognitive function with anemia showing only a weak association (−1.2 [−2.6, 0.3], p=0.12). Cognitive domains most associated with cognitive impairment were attention (AUROC = 0.86) and executive function (AUROC = 0.87) in COBRA and processing speed (AUROC = 0.80), motor function (AUROC = 0.78) and language (AUROC = 0.78) in NeuroAIDS. Two cohorts of PLWH from different geographical regions report similar rates of cognitive impairment but different risk factors and cognitive profiles of impairment
    corecore