230 research outputs found

    Genome-Wide Analysis of Two-Component Systems and Prediction of Stress-Responsive Two-Component System Members in Soybean

    Get PDF
    In plants, the two-component systems (TCSs) play important roles in regulating diverse biological processes, including responses to environmental stress stimuli. Within the soybean genome, the TCSs consist of at least 21 histidine kinases, 13 authentic and pseudo-phosphotransfers and 18 type-A, 15 type-B, 3 type-C and 11 pseudo-response regulator proteins. Structural and phylogenetic analyses of soybean TCS members with their Arabidopsis and rice counterparts revealed similar architecture of their TCSs. We identified a large number of closely homologous soybean TCS genes, which likely resulted from genome duplication. Additionally, we analysed tissue-specific expression profiles of those TCS genes, whose data are available from public resources. To predict the putative regulatory functions of soybean TCS members, with special emphasis on stress-responsive functions, we performed comparative analyses from all the TCS members of soybean, Arabidopsis and rice and coupled these data with annotations of known abiotic stress-responsive cis-elements in the promoter region of each soybean TCS gene. Our study provides insights into the architecture and a solid foundation for further functional characterization of soybean TCS elements. In addition, we provide a new resource for studying the conservation and divergence among the TCSs within plant species and/or between plants and other organisms

    Phosphorylation Alters the Interaction of the Arabidopsis Phosphotransfer Protein AHP1 with Its Sensor Kinase ETR1

    Get PDF
    The ethylene receptor ethylene response 1 (ETR1) and the Arabidopsis histidine-containing phosphotransfer protein 1 (AHP1) form a tight complex in vitro. According to our current model ETR1 and AHP1 together with a response regulator form a phosphorelay system controlling the gene expression response to the plant hormone ethylene, similar to the two-component signaling in bacteria. The model implies that ETR1 functions as a sensor kinase and is autophosphorylated in the absence of ethylene. The phosphoryl group is then transferred onto a histidine at the canonical phosphorylation site in AHP1. For phosphoryl group transfer both binding partners need to form a tight complex. After ethylene binding the receptor is switched to the non-phosphorylated state. This switch is accompanied by a conformational change that decreases the affinity to the phosphorylated AHP1. To test this model we used fluorescence polarization and examined how the phosphorylation status of the proteins affects formation of the suggested ETR1−AHP1 signaling complex. We have employed various mutants of ETR1 and AHP1 mimicking permanent phosphorylation or preventing phosphorylation, respectively. Our results show that phosphorylation plays an important role in complex formation as affinity is dramatically reduced when the signaling partners are either both in their non-phosphorylated form or both in their phosphorylated form. On the other hand, affinity is greatly enhanced when either protein is in the phosphorylated state and the corresponding partner in its non-phosphorylated form. Our results indicate that interaction of ETR1 and AHP1 requires that ETR1 is a dimer, as in its functional state as receptor in planta

    A Genome-Wide Compilation of the Two-Component Systems in Lotus japonicus

    Get PDF
    The two-component systems (TCS), or histidine-to-aspartate phosphorelays, are evolutionarily conserved common signal transduction mechanisms that are implicated in a wide variety of cellular responses to environmental stimuli in both prokaryotes and eukaryotes including plants. Among higher plants, legumes including Lotus japonicus have a unique ability to engage in beneficial symbiosis with nitrogen-fixing bacteria. We previously presented a genome-wide compiled list of TCS-associated components of Mesorhizobium loti, which is a symbiont specific to L. japonicus (Hagiwara et al. 2004, DNA Res., 11, 57–65). To gain both general and specific insights into TCS of this currently attractive model legume, here we compiled TCS-associated components as many as possible from a genome-wide viewpoint by taking advantage that the efforts of whole genome sequencing of L. japonicus are almost at final stage. In the current database (http://www.kazusa.or.jp/lotus/index.html), it was found that L. japonicus has, at least, 14 genes each encoding a histidine kinase, 7 histidine-containing phosphotransmitter-related genes, 7 type-A response regulator (RR)-related genes, 11 type-B RR-related genes, and also 5 circadian clock-associated pseudo-RR genes. These results suggested that most of the L. japonicus TCS-associated genes have already been uncovered in this genome-wide analysis, if not all. Here, characteristics of these TCS-associated components of L. japonicus were inspected, one by one, in comparison with those of Arabidopsis thaliana. In addition, some critical experiments were also done to gain further insights into the functions of L. japonicus TCS-associated genes with special reference to cytokinin-mediated signal transduction and circadian clock

    IQGAP1 Is Involved in Post-Ischemic Neovascularization by Regulating Angiogenesis and Macrophage Infiltration

    Get PDF
    Neovascularization is an important repair mechanism in response to ischemic injury and is dependent on inflammation, angiogenesis and reactive oxygen species (ROS). IQGAP1, an actin-binding scaffold protein, is a key regulator for actin cytoskeleton and motility. We previously demonstrated that IQGAP1 mediates vascular endothelial growth factor (VEGF)-induced ROS production and migration of cultured endothelial cells (ECs); however, its role in post-ischemic neovascularization is unknown.Ischemia was induced by left femoral artery ligation, which resulted in increased IQGAP1 expression in Mac3(+) macrophages and CD31(+) capillary-like ECs in ischemic legs. Mice lacking IQGAP1 exhibited a significant reduction in the post-ischemic neovascularization as evaluated by laser Doppler blood flow, capillary density and α-actin positive arterioles. Furthermore, IQGAP1(-/-) mice showed a decrease in macrophage infiltration and ROS production in ischemic muscles, leading to impaired muscle regeneration and increased necrosis and fibrosis. The numbers of bone marrow (BM)-derived cells in the peripheral blood were not affected in these knockout mice. BM transplantation revealed that IQGAP1 expressed in both BM-derived cells and tissue resident cells, such as ECs, is required for post-ischemic neovascularization. Moreover, thioglycollate-induced peritoneal macrophage recruitment and ROS production were inhibited in IQGAP1(-/-) mice. In vitro, IQGAP1(-/-) BM-derived macrophages showed inhibition of migration and adhesion capacity, which may explain the defective macrophage recruitment into the ischemic tissue in IQGAP1(-/-) mice.IQGAP1 plays a key role in post-ischemic neovascularization by regulating, not only, ECs-mediated angiogenesis but also macrophage infiltration as well as ROS production. Thus, IQGAP1 is a potential therapeutic target for inflammation- and angiogenesis-dependent ischemic cardiovascular diseases

    Putative cis-regulatory elements in genes highly expressed in rice sperm cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The male germ line in flowering plants is initiated within developing pollen grains via asymmetric division. The smaller cell then becomes totally encased within a much larger vegetative cell, forming a unique "cell within a cell structure". The generative cell subsequently divides to give rise to two non-motile diminutive sperm cells, which take part in double fertilization and lead to the seed set. Sperm cells are difficult to investigate because of their presence within the confines of the larger vegetative cell. However, recently developed techniques for the isolation of rice sperm cells and the fully annotated rice genome sequence have allowed for the characterization of the transcriptional repertoire of sperm cells. Microarray gene expression data has identified a subset of rice genes that show unique or highly preferential expression in sperm cells. This information has led to the identification of <it>cis</it>-regulatory elements (CREs), which are conserved in sperm-expressed genes and are putatively associated with the control of cell-specific expression.</p> <p>Findings</p> <p>We aimed to identify the CREs associated with rice sperm cell-specific gene expression data using <it>in silico </it>prediction tools. We analyzed 1-kb upstream regions of the top 40 sperm cell co-expressed genes for over-represented conserved and novel motifs. Analysis of upstream regions with the SIGNALSCAN program with the PLACE database, MEME and the Mclip tool helped to find combinatorial sets of known transcriptional factor-binding sites along with two novel motifs putatively associated with the co-expression of sperm cell-specific genes.</p> <p>Conclusions</p> <p>Our data shows the occurrence of novel motifs, which are putative CREs and are likely targets of transcriptional factors regulating sperm cell gene expression. These motifs can be used to design the experimental verification of regulatory elements and the identification of transcriptional factors that regulate sperm cell-specific gene expression.</p

    CaZF, a Plant Transcription Factor Functions through and Parallel to HOG and Calcineurin Pathways in Saccharomyces cerevisiae to Provide Osmotolerance

    Get PDF
    Salt-sensitive yeast mutants were deployed to characterize a gene encoding a C2H2 zinc finger protein (CaZF) that is differentially expressed in a drought-tolerant variety of chickpea (Cicer arietinum) and provides salinity-tolerance in transgenic tobacco. In Saccharomyces cerevisiae most of the cellular responses to hyper-osmotic stress is regulated by two interconnected pathways involving high osmolarity glycerol mitogen-activated protein kinase (Hog1p) and Calcineurin (CAN), a Ca2+/calmodulin-regulated protein phosphatase 2B. In this study, we report that heterologous expression of CaZF provides osmotolerance in S. cerevisiae through Hog1p and Calcineurin dependent as well as independent pathways. CaZF partially suppresses salt-hypersensitive phenotypes of hog1, can and hog1can mutants and in conjunction, stimulates HOG and CAN pathway genes with subsequent accumulation of glycerol in absence of Hog1p and CAN. CaZF directly binds to stress response element (STRE) to activate STRE-containing promoter in yeast. Transactivation and salt tolerance assays of CaZF deletion mutants showed that other than the transactivation domain a C-terminal domain composed of acidic and basic amino acids is also required for its function. Altogether, results from this study suggests that CaZF is a potential plant salt-tolerance determinant and also provide evidence that in budding yeast expression of HOG and CAN pathway genes can be stimulated in absence of their regulatory enzymes to provide osmotolerance

    Substance use and sexual behaviours of Japanese men who have sex with men: A nationwide internet survey conducted in Japan

    Get PDF
    BACKGROUND: Japanese men who have sex with men (MSM), especially those living in large metropolitan areas such as Tokyo and Osaka, are facing a growing HIV/AIDS epidemic. Although the Internet is used as a new venue for meeting sex partners, it can also serve as a useful research tool for investigating the risk behaviours of Japanese MSM. This Internet survey explored the extent of substance use and its association with sexual risk behaviours among Japanese MSM. METHODS: Between 28 February 2003 and 16 May 2003 MSM were recruited through 57 Japanese gay-oriented Web sites, gay magazines, and Internet mailing lists. Participants completed a structured questionnaire anonymously through the Internet. RESULTS: In total, 2,062 Japanese MSM completed the questionnaire. The average age of participants was 29.0 years and 70.5% identified as gay, 20.8% as bisexual, and 8.7% as other. Overall, 34.5% reported never using a substance, 45% reported ever using one type of substance (lifetime reported single substance users), and 19.6% had used more than 1 type of substance (lifetime reported multiple substance users) in their lifetimes. The substances most commonly used were amyl nitrite (63.2%), 5-methoxy-N, N-diisopropyltryptamine (5MEO-DIPT) (9.3%), and marijuana (5.7%). In the multivariate analysis, unprotected anal intercourse, having had 6 or more sexual partners, visiting a sex club/gay venue in the previous 6 months, a lower education level, and being 30 to 39 years of age were associated with both lifetime single and lifetime multiple substance use. Lifetime reported multiple substance use was also correlated with having a casual sex partner, having symptoms of depression, being diagnosed as HIV-positive, and greater HIV/AIDS-related knowledge. CONCLUSION: This is the first Internet-based research focused on the sexual and substance use behaviours of MSM in Asia. Our findings suggest a compelling need for prevention interventions to reduce HIV risk-related substance use behaviours among Japanese MSM. The results also suggest that the Internet is potentially a useful tool for collecting behavioural data and promoting prevention interventions among this population

    NADPH oxidases in cardiovascular disease: insights from in vivo models and clinical studies

    Get PDF
    NADPH oxidase family enzymes (or NOXs) are the major sources of reactive oxygen species (ROS) that are implicated in the pathophysiology of many cardiovascular diseases. These enzymes appear to be especially important in the modulation of redox-sensitive signalling pathways that underlie key cellular functions such as growth, differentiation, migration and proliferation. Seven distinct members of the family have been identified of which four (namely NOX1, 2, 4 and 5) may have cardiovascular functions. In this article, we review our current understanding of the roles of NOX enzymes in several common cardiovascular disease states, with a focus on data from genetic studies and clinical data where available
    corecore