471 research outputs found

    Sub-Hz line width diode lasers by stabilization to vibrationally and thermally compensated ULE Fabry-Perot cavities

    Full text link
    We achieved a 0.5 Hz optical beat note line width with ~ 0.1 Hz/s frequency drift at 972 nm between two external cavity diode lasers independently stabilized to two vertically mounted Fabry-Perot (FP) reference cavities. Vertical FP reference cavities are suspended in mid-plane such that the influence of vertical vibrations to the mirror separation is significantly suppressed. This makes the setup virtually immune for vertical vibrations that are more difficult to isolate than the horizontal vibrations. To compensate for thermal drifts the FP spacers are made from Ultra-Low-Expansion (ULE) glass which possesses a zero linear expansion coefficient. A new design using Peltier elements in vacuum allows operation at an optimal temperature where the quadratic temperature expansion of the ULE could be eliminated as well. The measured linear drift of such ULE FP cavity of 63 mHz/s was due to material aging and the residual frequency fluctuations were less than 40 Hz during 16 hours of measurement. Some part of the temperature-caused drift is attributed to the thermal expansion of the mirror coatings. High-frequency thermal fluctuations that cause vibrations of the mirror surfaces limit the stability of a well designed reference cavity. By comparing two similar laser systems we obtain an Allan instability of 2*10-15 between 0.1 and 10 s averaging time, which is close to the theoretical thermal noise limit.Comment: submitted to Applied Physics

    Frequency Metrology on single trapped ions in the weak binding limit: The 3s1/2-3p3/2 transition in 24-Mg+

    Full text link
    We demonstrate a method for precision spectroscopy on trapped ions in the limit of unresolved motional sidebands. By sympathetic cooling of a chain of crystallized ions we suppress adverse temperature variations induced by the spectroscopy laser that usually lead to a distorted line profle and obtain a Voigt profile with negligible distortions. We applied the method to measure the absolute frequency of the astrophysically relevant D2 transition in single 24-Mg+ ions and find 1072082934.33(16)MHz, a nearly 400fold improvement over previous results. Further, we find the excited state lifetime to be 3.84(10) ns.Comment: 4 pages, 5 figure

    Testing the Dirac equation

    Get PDF
    The dynamical equations which are basic for the description of the dynamics of quantum felds in arbitrary space--time geometries, can be derived from the requirements of a unique deterministic evolution of the quantum fields, the superposition principle, a finite propagation speed, and probability conservation. We suggest and describe observations and experiments which are able to test the unique deterministic evolution and analyze given experimental data from which restrictions of anomalous terms violating this basic principle can be concluded. One important point is, that such anomalous terms are predicted from loop gravity as well as from string theories. Most accurate data can be obtained from future astrophysical observations. Also, laboratory tests like spectroscopy give constraints on the anomalous terms.Comment: 11 pages. to appear in: C. L\"ammerzahl, C.W.F. Everitt, and F.W. Hehl (eds.): Gyros, Clocks, Interferometers...: Testing Relativistic Gravity in Space, Lecture Notes in Physics 562, Springer 200

    Injection Locking of a Trapped-Ion Phonon Laser

    Get PDF
    We report on injection locking of optically excited mechanical oscillations of a single, trapped ion. The injection locking dynamics are studied by analyzing the oscillator spectrum with a spatially selective Fourier transform technique and the oscillator phase with stroboscopic imaging. In both cases we find excellent agreement with theory inside and outside the locking range. We attain injection locking with forces as low as 5(1)×10^(-24)  N so this system appears promising for the detection of ultraweak oscillating forces

    Laser frequency combs for astronomical observations

    Full text link
    A direct measurement of the universe's expansion history could be made by observing in real time the evolution of the cosmological redshift of distant objects. However, this would require measurements of Doppler velocity drifts of about 1 centimeter per second per year, and astronomical spectrographs have not yet been calibrated to this tolerance. We demonstrate the first use of a laser frequency comb for wavelength calibration of an astronomical telescope. Even with a simple analysis, absolute calibration is achieved with an equivalent Doppler precision of approximately 9 meters per second at about 1.5 micrometers - beyond state-of-the-art accuracy. We show that tracking complex, time-varying systematic effects in the spectrograph and detector system is a particular advantage of laser frequency comb calibration. This technique promises an effective means for modeling and removal of such systematic effects to the accuracy required by future experiments to see direct evidence of the universe's putative acceleration.Comment: Science, 5th September 2008. 18 pages, 7 figures (7 JPG files), including Supporting Online Material. Version with higher resolution figures available at http://astronomy.swin.edu.au/~mmurphy/pub.htm

    Sub-milliKelvin spatial thermometry of a single Doppler cooled ion in a Paul trap

    Full text link
    We report on observations of thermal motion of a single, Doppler-cooled ion along the axis of a linear radio-frequency quadrupole trap. We show that for a harmonic potential the thermal occupation of energy levels leads to Gaussian distribution of the ion's axial position. The dependence of the spatial thermal spread on the trap potential is used for precise calibration of our imaging system's point spread function and sub-milliKelvin thermometry. We employ this technique to investigate the laser detuning dependence of the Doppler temperature.Comment: 5 pages, 4 figure

    Precision spectroscopy of the 3s-3p fine structure doublet in Mg+

    Get PDF
    We apply a recently demonstrated method for precision spectroscopy on strong transitions in trapped ions to measure both fine structure components of the 3s-3p transition in 24-Mg+ and 26-Mg+. We deduce absolute frequency reference data for transition frequencies, isotope shifts and fine structure splittings that are in particular useful for comparison with quasar absorption spectra, which test possible space-time variations of the fine structure constant. The measurement accuracy improves previous literature values, when existing, by more than two orders of magnitude

    Comb-calibrated solar spectroscopy through a multiplexed single-mode fiber channel

    Get PDF
    We investigate a new scheme for astronomical spectrograph calibration using the laser frequency comb at the Solar Vacuum Tower Telescope on Tenerife. Our concept is based upon a single-mode fiber channel, that simultaneously feeds the spectrograph with comb light and sunlight. This yields nearly perfect spatial mode matching between the two sources. In combination with the absolute calibration provided by the frequency comb, this method enables extremely robust and accurate spectroscopic measurements. The performance of this scheme is compared to a sequence of alternating comb and sunlight, and to absorption lines from Earth's atmosphere. We also show how the method can be used for radial-velocity detection by measuring the well-explored 5-minute oscillations averaged over the full solar disk. Our method is currently restricted to solar spectroscopy, but with further evolving fiber-injection techniques it could become an option even for faint astronomical targets.Comment: 21 pages, 11 figures. A video abstract for this paper is available on youtube. For watching the video, please follow https://www.youtube.com/watch?v=oshdZgrt89I . The video abstract is also available for streaming and download on the related article website of New Journal of Physic

    Number-resolved detection of dark ions in Coulomb crystals

    Get PDF

    A Frequency Comb calibrated Solar Atlas

    Full text link
    The solar spectrum is a primary reference for the study of physical processes in stars and their variation during activity cycles. In Nov 2010 an experiment with a prototype of a Laser Frequency Comb (LFC) calibration system was performed with the HARPS spectrograph of the 3.6m ESO telescope at La Silla during which high signal-to-noise spectra of the Moon were obtained. We exploit those Echelle spectra to study the optical integrated solar spectrum . The DAOSPEC program is used to measure solar line positions through gaussian fitting in an automatic way. We first apply the LFC solar spectrum to characterize the CCDs of the HARPS spectrograph. The comparison of the LFC and Th-Ar calibrated spectra reveals S-type distortions on each order along the whole spectral range with an amplitude of +/-40 m/s. This confirms the pattern found by Wilken et al. (2010) on a single order and extends the detection of the distortions to the whole analyzed region revealing that the precise shape varies with wavelength. A new data reduction is implemented to deal with CCD pixel inequalities to obtain a wavelength corrected solar spectrum. By using this spectrum we provide a new LFC calibrated solar atlas with 400 line positions in the range of 476-530, and 175 lines in the 534-585 nm range. The new LFC atlas improves the accuracy of individual lines by a significant factor reaching a mean value of about 10 m/s. The LFC--based solar line wavelengths are essentially free of major instrumental effects and provide a reference for absolute solar line positions. We suggest that future LFC observations could be used to trace small radial velocity changes of the whole solar photospheric spectrum in connection with the solar cycle and for direct comparison with the predicted line positions of 3D radiative hydrodynamical models of the solar photosphere.Comment: Accept on the 15th of October 2013. 9 pages, 10 figures. ON-lINE data A&A 201
    • …
    corecore