The dynamical equations which are basic for the description of the dynamics
of quantum felds in arbitrary space--time geometries, can be derived from the
requirements of a unique deterministic evolution of the quantum fields, the
superposition principle, a finite propagation speed, and probability
conservation. We suggest and describe observations and experiments which are
able to test the unique deterministic evolution and analyze given experimental
data from which restrictions of anomalous terms violating this basic principle
can be concluded. One important point is, that such anomalous terms are
predicted from loop gravity as well as from string theories. Most accurate data
can be obtained from future astrophysical observations. Also, laboratory tests
like spectroscopy give constraints on the anomalous terms.Comment: 11 pages. to appear in: C. L\"ammerzahl, C.W.F. Everitt, and F.W.
Hehl (eds.): Gyros, Clocks, Interferometers...: Testing Relativistic Gravity
in Space, Lecture Notes in Physics 562, Springer 200