36 research outputs found

    Genetic dissection of an amygdala microcircuit that gates conditioned fear

    Get PDF
    The role of different amygdala nuclei (neuroanatomical subdivisions) in processing Pavlovian conditioned fear has been studied extensively, but the function of the heterogeneous neuronal subtypes within these nuclei remains poorly understood. Here we use molecular genetic approaches to map the functional connectivity of a subpopulation of GABA-containing neurons, located in the lateral subdivision of the central amygdala (CEl), which express protein kinase C-δ (PKC-δ). Channelrhodopsin-2-assisted circuit mapping in amygdala slices and cell-specific viral tracing indicate that PKC-δ^+ neurons inhibit output neurons in the medial central amygdala (CEm), and also make reciprocal inhibitory synapses with PKC-δ^− neurons in CEl. Electrical silencing of PKC-δ^+ neurons in vivo suggests that they correspond to physiologically identified units that are inhibited by the conditioned stimulus, called Cel_(off) units. This correspondence, together with behavioural data, defines an inhibitory microcircuit in CEl that gates CEm output to control the level of conditioned freezing

    A split horseradish peroxidase for detection of intercellular protein-protein interactions and sensitive visualization of synapses

    Get PDF
    Intercellular protein-protein interactions (PPIs) enable communication between cells in diverse biological processes, including cell proliferation, immune responses, infection and synaptic transmission, but they are challenging to visualize because existing techniques1,2,3 have insufficient sensitivity and/or specificity. Here we report split horseradish peroxidase (sHRP) as a sensitive and specific tool for detection of intercellular PPIs. The two sHRP fragments, engineered through screening of 17 cut sites in HRP followed by directed evolution, reconstitute into an active form when driven together by an intercellular PPI, producing bright fluorescence or contrast for electron microscopy. Fusing the sHRP fragments to the proteins neurexin (NRX) and neuroligin (NLG), which bind each other across the synaptic cleft4, enabled sensitive visualization of synapses between specific sets of neurons, including two classes of synapses in the mouse visual system. sHRP should be widely applicable for studying mechanisms of communication between a variety of cell types

    Hippocampal synaptic plasticity, spatial memory and anxiety

    Full text link

    Emerging Interest in the Kallikrein Gene Family for Understanding and Diagnosing Cancer

    No full text
    Kallikreins are proteolytic enzymes that constitute a subfamily of serine proteases. Novel kallikrein genes were cloned recently, and it was shown that the human kallikrein family contains 15 genes tandemly aligned on chromosomal locus 19q13.3-q13.4. Based on their altered expression in tumor cells, kallikreins may be involved in the pathogenesis and/or progression of cancer. Evidence is presented that certain kallikreins may be exploited as diagnostic cancer biomarkers. Although the function(s) of novel kallikreins is currently unknown, increasing evidence suggests that kallikreins may participate in regulatory enzymatic cascade(s). Elucidation of the function of novel kallikreins largely depends on the availability of active recombinant proteins. Here, the zymogen for kallikrein 13 was overexpressed in Pichia pastoris and biochemically characterized. It was shown that the kallikrein 13 zymogen displays intrinsic catalytic activity leading to autoactivation. A clipped form of kallikrein 13 was identified, indicating autocatalytic cleavage at the internal bond R114-S115. Mature kallikrein 13 displays trypsin-like activity with restricted specificity on synthetic and protein substrates. Combinatorial P1-Lys libraries of tetrapeptide fluorogenic substrates were synthesized and used for the profiling of the P2 specificity of selected kallikreins. Interestingly, it was shown that human kallikrein 13, similarly to PSA, could specifically cleave human plasminogen to generate angiostatin-like fragments, suggesting that specific kallikreins may have antiangiogenic actions. An understanding of the physiology of human kallikreins is emerging with potential clinical applications

    A neural switch for active and passive fear.

    No full text
    The central nucleus of the amygdala (CeA) serves as a major output of this structure and plays a critical role in the expression of conditioned fear. By combining cell- and tissue-specific pharmacogenetic inhibition with functional magnetic resonance imaging (fMRI), we identified circuits downstream of CeA that control fear expression in mice. Selective inhibition of a subset of neurons in CeA led to decreased conditioned freezing behavior and increased cortical arousal as visualized by fMRI. Correlation analysis of fMRI signals identified functional connectivity between CeA, cholinergic forebrain nuclei, and activated cortical structures, and cortical arousal was blocked by cholinergic antagonists. Importantly, inhibition of these neurons switched behavioral responses to the fear stimulus from passive to active responses. Our findings identify a neural circuit in CeA that biases fear responses toward either passive or active coping strategies

    A Neural Switch for Active and Passive Fear -erratum

    No full text
    (Neuron 67, 656–666; August 26, 2010) In this article, the author list misspelled Aldo Giovannelli's last name as “Giovanelli.” The spelling is correct as shown above, and the authors regret this error

    A Neural Switch for Active and Passive Fear

    Get PDF
    The central nucleus of the amygdala (CeA) serves as a major output of this structure and plays a critical role in the expression of conditioned fear. By combining cell- and tissue-specific pharmacogenetic inhibition with functional magnetic resonance imaging (fMRI), we identified circuits downstream of CeA that control fear expression in mice. Selective inhibition of a subset of neurons in CeA led to decreased conditioned freezing behavior and increased cortical arousal as visualized by fMRI. Correlation analysis of fMRI signals identified functional connectivity between CeA, cholinergic fore-brain nuclei, and activated cortical structures, and cortical arousal was blocked by cholinergic antagonists. Importantly, inhibition of these neurons switched behavioral responses to the fear stimulus from passive to active responses. Our findings identify a neural circuit in CeA that biases fear responses toward either passive or active coping strategies
    corecore