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SUMMARY

The central nucleus of the amygdala (CeA) serves as
a major output of this structure and plays a critical
role in the expression of conditioned fear. By com-
bining cell- and tissue-specific pharmacogenetic
inhibition with functional magnetic resonance
imaging (fMRI), we identified circuits downstream
of CeA that control fear expression in mice. Selec-
tive inhibition of a subset of neurons in CeA led to
decreased conditioned freezing behavior and in-
creased cortical arousal as visualized by fMRI.
Correlation analysis of fMRI signals identified func-
tional connectivity between CeA, cholinergic fore-
brain nuclei, and activated cortical structures, and
cortical arousal was blocked by cholinergic antago-
nists. Importantly, inhibition of these neurons
switched behavioral responses to the fear stimulus
from passive to active responses. Our findings
identify a neural circuit in CeA that biases fear
responses toward either passive or active coping
strategies.

INTRODUCTION

Research over the past decades has consistently pointed to the

amygdala as a key component of the brain’s emotional network.

Numerous studies in rodents, primates, and humans have

demonstrated the involvement of this structure in mediating

the emotional, behavioral, and physiological responses associ-

ated with fear and anxiety particularly in response to conditioned

aversive cues (Aggleton, 1992; Davis and Whalen, 2001;

LeDoux, 2000). The amygdala is a highly heterogeneous cluster

of forebrain nuclei that can be subdivided into cortical and

striatal divisions (Swanson and Petrovich, 1998). The central

nucleus (CeA) is located within the striatal division and serves

as a major output of the amygdala for the control of mid- and

hind-brain circuits involved in physiological and behavioral

defensive responses (Amaral et al., 1992). The CeA can be

further subdivided into medial and lateral subnuclei whose
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neurons express different neuromodulatory receptors (Huber

et al., 2005; Tribollet et al., 1988; Veinante and Freund-Mercier,

1997) and appear to differentially project to downstream targets

(Jolkkonen et al., 2002). However, it remains unknown how

aversive signals are processed within CeA and how this nucleus

differentially engages diverse downstream targets to support

stimulus-appropriate fear responses.

Using a pharmacogenetic inhibition strategy (Luo et al.,

2008) in transgenic mice, we were recently able to show that

neural activity in a subset of neurons in CeA is necessary for

freezing behavior in response to a conditioned aversive stim-

ulus (Tsetsenis et al., 2007). These neurons, which we called

type I cells (Tsetsenis et al., 2007) and which are likely to be

similar to type B neurons described in rats (Schiess et al.,

1999; Sah et al., 2003; Lopez De Armentia and Sah, 2004),

are distinguished from the majority of remaining neurons

(called type II, Tsetsenis et al., 2007) by the presence of a

prominent depolarizing after-potential. Selective pharmacolog-

ical suppression of neural activity in type I CeA neurons was

achieved by expressing the Gai-coupled serotonin 1A receptor

(Htr1a) under the control of a tissue-specific promoter in

transgenic mice that are missing the endogenous receptor

(the resulting mice are called Htr1aCeA). Systemic treatment

of Htr1aCeA mice with a selective agonist of Htr1a, 8-

hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT), led to the

opening of G protein coupled inward rectifying potassium

(GIRK) channels, membrane hyperpolarization, and suppres-

sion of neural firing (Tsetsenis et al., 2007). A suppression of

conditioned freezing behavior following inhibition of CeA

neurons is consistent with the proposed role of CeA as an

output circuit that promotes autonomic and behavioral re-

sponses to conditioned fear (Wilensky et al., 2006). Here, we

combine pharmacogenetic inhibition of neural activity in CeA

with functional magnetic resonance imaging (fMRI) to map

in vivo neural activity in circuits downstream of CeA that are

involved in conditioned fear responding. This approach identi-

fied ventral forebrain cholinergic neurons as a critical down-

stream target of CeA and demonstrated that type I cells within

CeA actively suppress cholinergic-mediated cortical arousal

and exploratory behavior at the same time as promoting

freezing responses and thus serve as a switch between active

and passive fear.
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Figure 1. Pharmacological Activation of Htr1a Leads to Widespread Inhibition of Neural Activity in Wild-Type Mice

Anatomical distribution of the rCBV changes produced by administration of the Htr1a agonist, 8-OH-DPAT (0.5 mg/kg i.a.) in (A) wild-type (n = 14) and (B) Htr1a

knockout (Htr1aKO, n = 8) mice. Blue indicates significantly reduced rCBV compared with vehicle baseline (Z > 1.96, cluster correction, p = 0.01). For eachmouse

line the rCBV time course following vehicle or 8-OH-DPAT injection in a representative brain region is shown below each map (vDG, ventral dentate gyrus; Rs,

retrosplenial cortex; Amy, amygdala; Cg, cingulate cortex; Cpu, caudate putamen; mPFC, medial prefrontal cortex; Sctx, somatosensory cortex). A significant

decrease in rCBV was observed following 8-OH-DPAT treatment in wild-type, but not Htr1aKO mice, demonstrating the feasibility of using rCBV to map Htr1a-

dependent inhibition of neural activity. Htr1a receptor distribution (125I-MPPI autoradiography) in a representative brain slice for each strain is shown for reference.
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RESULTS

fMRI Mapping of Neural Activity Following
Cell-Type-Specific Inhibition
To determine the feasibility of using fMRI to map neural activity

changes following cell type-specific neural inhibition using the

Htr1a-based system (Tsetsenis et al., 2007), wild-type mice

were placed in theMR scanner and fMRI signal changes induced

by systemic administration of the Htr1a agonist 8-OH-DPAT

(0.5 mg/kg i.a.) were examined. For all studies, we used relative

cerebral blood volume (rCBV) as a surrogate for the underlying

changes in neural activity (Sheth et al., 2004). This measure

has gained acceptance as the measure of choice in small animal

fMRI studies where sensitivity is a significant technical challenge

(Chen et al., 2001; Jenkins et al., 2003). Consistent with the effi-

cient coupling of Htr1a to inhibitory GIRK channels (Luscher

et al., 1997), systemic treatment with 8-OH-DPAT led to a signif-

icant and widespread decrease in rCBV in all structures where

Htr1a is expressed (Figure 1A), including striatum, amygdala,

ventral hippocampus, and prefrontal, cingulate, insular, and

rhinal cortices (Z > 1.96, cluster corrected at p = 0.05). The

time profile of the effect was similar in all regions examined,

with a sustained negative response that lasted throughout the

time-window examined (Figure S1). As seen previously (Gozzi
et al., 2007; Schwarz et al., 2006), vehicle injection produced

a small decrease in rCBV that probably reflected dilution of the

blood-pool contrast agent.

Importantly, the agonist-induced decrease in rCBV was

absent in Htr1a knockout mice confirming the selectivity of

8-OH-DPAT for Htr1a at this dose in vivo (Figure 1B). As ex-

pected, time profiles of rCBV following vehicle or 8-OH-DPAT

administration in knockout mice (Htr1aKO) showed substantial

overlap in all regions examined (Figure S1). Similarly, image-

based analysis did not highlight significant agonist-induced

activation or deactivation (Z > 1.96, cluster correction p =

0.05). These data indicate that neural inhibition associated

with activation of Htr1a can be mapped in vivo using pharmaco-

logical fMRI.

Suppression of Type I CeA Neurons Leads
to Widespread Cortical Activation
Next, we examined rCBV changes following agonist-induced

inhibition of type I neurons in CeA using Htr1aCeA mice

(Htr1aKO/Htr1aKO;Nrip2-Htr1a/+; Tsetsenis et al., 2007). Unex-

pectedly, a significantly increased rCBV signal was seen in

several forebrain areas, including cerebral cortex, thalamus,

ventral hippocampus, amygdala, caudate putamen, and septum

(Figure 2). Time course analyses of the rCBV response to
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Figure 2. Cortical Arousal Following Suppression of Type I CeACells

Neural activity as measured by rCBV using fMRI in Htr1aCeA mice treated with

the Htr1a agonist, 8-OH-DPAT (0.5 mg/kg i.a., n = 9). Yellow/orange indicates

significantly increased rCBV compared with vehicle baseline (Z > 3.5; cluster

correction p = 0.01). Bottom panel shows rCBV time course following vehicle

or 8-OH-DPAT injection in the somatosensory cortex. Significant increases in

rCBV were detected following agonist treatment in several regions, including

cerebral cortex, thalamus, ventral hippocampus, amygdala, caudate puta-

men, and septum. Htr1a receptor distribution (125I-MPPI autoradiography) in

a representative brain slice of Htr1aCeA is reported for reference (vDG, ventral

dentate gyrus; Th, thalamus; Cpu, caudate putamen; mPFC, medial prefrontal

cortex; SC, somatosensory cortex; MS, medial septum).
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8-OH-DPAT in representative regions of interest (ROIs) revealed

a sustained activation that lasted throughout the time-window

examined (Figure S2). Again, no agonist-induced activation

was seen in knockout littermates (Htr1aKO; Figure 1B; Figure S1).

In order to map neural circuits that mediate cortical activation

in Htr1aCeA mice following agonist treatment, we applied corre-

lation analysis to the regional fMRI responses. This approach

aims to elucidate relationships between signals elicited by

agonist challenge in spatially distinct brain regions and comple-

ments the univariate approach applied to generate rCBV maps

(Figures 1 and 2). These correlations can be interpreted as

reflecting functional connectivity between the regions involved

(Schwarz et al., 2007a) and can be used to resolve specific brain

circuits engaged by pharmacological agents (Schwarz et al.,

2007b). Correlation analysis revealed brain regions whose

agonist-induced rCBV responses significantly correlated with a

seed region located in CeA (Figure 3A). A significant pattern of

correlated activity was identified linking CeA with cholinergic

nuclei in the ventral forebrain, including substantia innominata
658 Neuron 67, 656–666, August 26, 2010 ª2010 Elsevier Inc.
(SI), diagonal band (DB), and nucleus basalis of Meynert (NBM)

in 8-OH-DPAT-treated Htr1aCeA mice (Figure 3A). A similar anal-

ysis of bottom-up connectivity from the cortical regions most

strongly activated by 8-OH-DPAT in the same group showed

significant connectivity between cortex and the same cholinergic

nuclei (SI, DB, and NBM; Figure 3B). This connectivity is consis-

tent with anatomical and functional studies demonstrating

cholinergic innervation of cortex by these structures in rodents

(Mesulam et al., 1983). When considered together with the find-

ings of our univariate analysis (Figure 2), these results suggest

that suppression of neural activity in type I CeA neurons leads

to a disinhibition of selected ventral forebrain cholinergic nuclei

and a consequent arousal of cortical circuits.

To test the hypothesis of a functional involvement of cholin-

ergic circuits in the observed cortical arousal, we performed

fMRI mapping in response to 8-OH-DPAT in Htr1aCeA mice

pretreated with atropine, an antagonist of muscarinic acetylcho-

line receptors. Atropine-sulfate (0.3 mg/kg, i.p.) significantly

attenuated 8-OH-DPAT induced activation in all brain regions

examined (Figures 3C and S3). Importantly, atropine-methylni-

trate (0.3 mg/kg, i.p.), an atropine salt with poor blood-brain

barrier penetration (Boccia et al., 2003), did not significantly

block cortical arousal (Figures 3D, S2, and S3) arguing against

a role of peripheral cholinergic receptors in mediating the effect.

Moreover, atropine sulfate did not attenuate the rCBV response

to 8-OH-DPAT in wild-type mice (Figure S3). These findings

support a role for central cholinergic disinhibition in the cortical

arousal seen after silencing of type I CeA neurons and are

consistent with our functional connectivity mapping analysis.

Switch from Passive to Active Conditioned Behavior
Next, we examined the behavioral correlates of cortical arousal

following suppression of type I CeA neuron activity. As previ-

ously reported (Tsetsenis et al., 2007), Htr1aCeA mice treated

with 8-OH-DPAT (0.2mg/kg, s.c.) showed a significant reduction

of freezing behavior during the tone when compared with

vehicle-treated Htr1aCeA mice (Figure 4A) and no change in

freezing to the tone was seen in agonist-treated Htr1aKO control

littermates (ANOVA – genotype3 treatment effect for freezing to

the tone: F[1, 100] = 4.51, p = 0.0362, n = 19-30; Figure 4B).

However, agonist-treated Htr1aCeA mice also showed a signifi-

cant increase in several exploratory and risk assessment behav-

iors, including digging, exploration, and rearing (Figure 4C).

When summed as total active behavior (cumulative digging,

exploration, and rearing), agonist-treated Htr1aCeA, but not

Htr1aKO mice showed a dramatic shift from passive to active

conditioned behavior during the tone (ANOVA – genotype 3

treatment effect on active behavior during tone: F[1,100] =

4.475, p = 0.0369, n = 19-30; Figures 4A–4D). Notably, agonist

treatment produced only a small, nonsignificant increase in

active behaviors in Htr1aCeA mice during the prestimulus period

and a similar trend was seen in Htr1aKO mice (data not shown).

These data argue for a shift in the quality of responses to the

conditioned aversive stimulus following inhibition of type I CeA

neurons. To determine whether active and passive behaviors

were mutually exclusive expressions of fear, we examined

within-animal correlations of active and passive behavior during

exposure to the conditioned stimulus. An inverse correlation



Figure 3. Atropine Blocks Cortical Arousal

Following Inhibition of Type I CeA Cells

Maps of 8-OH-DPAT-induced rCBV response that

significantly correlated with rCBV signal in (A) CeA

and (B) somatosensory cortex (SSctx) in Htr1aCeA

mice (Z > 1.6, cluster correction p = 0.01, n = 9).

The three images in (A) refer to three perpendicular

sections located at Zbregma �0.6 mm, interaural

1.2 mm, and lateral 1.4 mm, respectively. Signifi-

cantly correlated rCBV signal was detected

between CeA, Si, and db and between SSctx, Si,

db, MS, and NB, suggesting a functional connec-

tivity network linking CeA, ventral forebrain cholin-

ergic nuclei, and neocortex. Pretreatment with (C)

atropine sulfate (n = 5), but not (D) a non-brain

penetrant salt of atropine (atropine methyl-nitrite,

n = 5) blocked the rCBV signal increases seen after

8-OH-DPAT (0.5 mg/kg i.a) treatment of Htr1aCeA

mice (n = 9; **p < 0.01 versus vehicle-pretreated

subjects, one-way ANOVA followed by Fisher’s

LSD test; CeA, central nucleus of the amygdala;

LH, lateral hypothalamus; gp, external globus

pallidus; IC, internal capsule; Si, substantia inno-

minata; db, nucleus of the diagonal band of Broca;

MS, medial septum; NB, nucleus basalis of

Meynert; SS, somatosensory cortex; M1, motor

cortex; Hipoth, hypothalamus; Amy, amygdala;

CPu, caudate putamen; V1, visual cortex; Enth,

entorhinal cortex).
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emerged between freezing and active behavior (r2 = 0.35;

Figure 4I), suggesting that expression of these responses was

codependent.

One interpretation of our findings is that suppression of type I

CeA neurons induced cortical arousal during behavioral testing,

and this cortical activity directly contributed to a shift in behav-

ioral responses to the conditioned stimulus. First, we tested

whether inhibition of type I cells was associated with cortical

arousal in awake behaving mice by performing c-Fos immuno-

histochemistry following treatment of Htr1aCeA and Htr1aKO

littermates with 8-OH-DPAT (0.2 mg/kg, s.c.). The number of

c-Fos-positive cells in the anterior cingulate area (a region

showing prominent rCBV increases following agonist treatment;

Figure 2) was significantly greater in agonist-treated Htr1aCeA

than Htr1aKO mice (Figure 5). These findings confirmed in-

creased cortical neuron activity following suppression of type I

CeA neurons in behaving mice. Second, we examined whether

pretreatment with atropine was able to interfere with behavioral

responses to the fear stimulus. While atropine had no significant
Neuron 67, 656–666
effect on freezing and/or active behaviors

during the tone in agonist-treated

Htr1aKO mice suggesting normal fear

recall in the presence of atropine (Figures

4F and 4H). In Htr1aCeA mice, however,

atropine pretreatment significantly re-

versed the suppression of freezing be-

havior and showed a trend for a reversal

of the induction of active behaviors

following 8-OH-DPAT treatment (Figures

4E and 4G). These data suggest that
cholinergic neurotransmission directly contributes to the switch

between passive and active behavioral responses. Notably,

however, the low dose of atropine (0.1 mg/kg) had a significant

and selective effect on freezing, while leaving active behaviors

unaltered (Figures 4E and 4G). This dissociation reveals that

active and passive behaviors are differentially dependent on

cholinergic neurotransmission.

Activation of Oxytocin-Responsive Neurons in Lateral
CeA
Given the dissociation between oxytocin and vasopressin

receptor-expressing GABAergic projection neurons in lateral

and medial CeA, respectively (Veinante and Freund-Mercier,

1997) and the exclusive enervation of SI/NBM by lateral, but

not medial CeA projections (Jolkkonen et al., 2002), we consid-

ered whether type I cells might selectively inhibit oxytocin

receptor-expressing cells in the lateral CeA. Whole-cell

recordings in lateral CeA neurons in slices from Htr1aCeA and

Htr1aKO littermates confirmed the presence of depolarizing
, August 26, 2010 ª2010 Elsevier Inc. 659
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Figure 4. Switch from Passive to Active Fear

Responses Following Inhibition of Type I CeA Cells

Behavioral analysis of Htr1aCeA and Htr1aKO mice pre-

treatedwith either vehicle (saline, s.c.) or the Htr1a agonist,

8-OH-DPAT (0.2 mg/kg, s.c.) during exposure to a tone

(3 min) previously associated with footshock revealed

a reduction in duration of freezing and increase in duration

of active exploratory/risk assessment behavior in (A and C)

Htr1aCeA (vehicle: n = 19, agonist: n = 26), but not (B and D)

Htr1aKO mice (vehicle: n = 29, agonist: n = 30). Active

behavior was scored as cumulative digging, exploration,

and rearing. Atropine pretreatment (0.1 and 0.3 mg/kg,

i.p.) caused a significant reversal of the inhibition of

freezing seen following 8-OH-DPAT-treatment in (E)

Htr1aCeA (vehicle: n = 10, 8-OH-DPAT: n = 17, low atro-

pine: n = 19, high atropine: N = 9), but not (F) Htr1aKO

mice (vehicle: n = 20, 8-OH-DPAT: n = 20, low atropine:

n = 17, high atropine: n = 7), while showing a trend for

a reversal of the increase in active behavior seen following

8-OH-DPAT-treatment at the higher dose in (G) Htr1aCeA,

but not (H) Htr1aKO mice. (I) Plot of active behavior against

freezing in individual Htr1aCeA mice treated with 8-OH-

DPAT (n = 26) revealed a negative correlation (r2 = 0.355,

p = 0.0013) between active and passive fear responses

(*p < 0.05, **p < 0.01).
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after-potential (DAP) positive, type I (Figure 6A) and DAP-nega-

tive, type II (Figure 6F) neurons in this subnucleus (Tsetsenis

et al., 2007). Application of 8-OH-DPAT (50 mM, 1–3 min) caused

inhibition of cell firing in type I neurons of Htr1aCeA (Figures 6B

and 6C), but not Htr1aKO (3.51 ± 0.88 Hz to 3.05 ± 0.99 Hz; n = 7,

p = 0.13) mice, consistent with our previous observations

(Tsetsenis et al., 2007). Application of the oxytocin receptor

agonist [Thr4, Gly7]-oxytocin (TGOT, 0.2 mM, 1–3 min) had no
660 Neuron 67, 656–666, August 26, 2010 ª2010 Elsevier Inc.
effect on firing of type I cells (Figures 6D–6E),

but significantly increased firing of type II cells

(Figures 6I–6J) consistent with the selective

expression of oxytocin receptor on this class

of cells. Importantly, type II cells also showed

excitatory responses to 8-OH-DPAT (Figures

6G and 6H), while the Htr1a agonist had no

significant effect on firing of this class of neuron

in slices from Htr1aKO controls (1.07 ± 0.19 to

1.00 ± 0.22 Hz; n = 3, p = 0.3). Oxytocin

receptor-expressing cells in lateral CeA are

known to inhibit vasopressin receptor-express-

ing cells in medial CeA (Huber et al., 2005), and

recordings from the medial subnucleus in our

preparations confirmed inhibitory effects of

TGOT (data not shown). Together, these data

are consistent with type I CeA neurons being

local inhibitory neurons that tonically suppress

firing of oxytocin receptor-expressing type II

projection neurons in lateral CeA.

DISCUSSION

We have used pharmacological fMRI to map

circuits downstream of the amygdala that are
involved in the expression of conditioned fear responses. Our

findings point to ventral forebrain cholinergic nuclei as a critical

downstream target of CeA that promote cortical arousal and

facilitate active responses at the expense of passive responses

to a conditioned aversive stimulus. Several conclusions can be

drawn from our study in light of previous anatomical and func-

tional studies. First, anterograde tracing studies demonstrate

that projections from amygdala to ventral forebrain cholinergic



Figure 5. Increased Cortical c-Fos Immunoreactivity Following

Inhibition of Type I CeA Cells

Quantification of c-Fos immunoreactivity in sections from brains of mice

90 min after treatment with 8-OH-DPAT (0.2 mg/kg, s.c.). A significantly

greater increase in the number of c-Fos IR-positive nuclei was seen in the

anterior cingulate area (ACA) of Htr1aCeA (n = 4) versus Htr1aKO (n = 3) mice

(**p < 0.001).
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nuclei such as SI, DB, and NBM originate exclusively from the

lateral and/or capsular subnuclei of CeA (Jolkkonen et al.,

2002). Because these connections make symmetric synapses

onto neurons in the vicinity of cholinergic cell bodies in these

target nuclei, they are likely to be GABAergic projection neurons

that regulate activity of cholinergic neurons via inhibition of local

GABAergic interneurons (Jolkkonen et al., 2002). An excitatory

role for CeA on cortical activity is confirmed by electrophysiolog-

ical studies that demonstrate a shift from large irregular slow

activity (synchronous) to low voltage fast (asynchronous) cortical

activity following electrical stimulation of CeA, an effect that is

blocked by the cholinergic antagonist scopolamine (Dringenberg

and Vanderwolf, 1997). Our electrophysiological studies demon-

strate that type II cells are likely to be identical to the GABAergic,

oxytocin receptor-expressing projection neurons previously

described in the lateral CeA (Huber et al., 2005). Firing of these

cells was consistently increased by bath application of the

Htr1a agonist in Htr1aCeA mice (Figures 6G and 6H), consistent

with a direct inhibitory connection between type I and type II cells

in lateral CeA. Thus, we speculate that type II neurons in lateral

CeA are equal to the previously described CeA-SI/NBM projec-

ting neurons (Jolkkonen et al., 2002) and are responsible for

mediating the cortical arousal seen in our fMRI (Figure 2) and

c-Fos (Figure 5) mapping studies.

Second, previous work has shown that oxytocin receptor-

expressing cells in lateral CeA also project to and directly inhibit

vasopressin receptor-expressing cells in medial CeA (Huber

et al., 2005; data not shown). Efferents from the medial CeA

project to hypothalamic and brainstem circuits that control

freezing and autonomic fear responses and are thought to be

responsible for conditioned freezing and autonomic responses

to painful stimuli (Ehrlich et al., 2009). Thus, it is possible that
disinhibition of type II cells by Htr1a agonist treatment in

Htr1aCeA mice suppresses conditioned freezing in part by

directly inhibiting medial CeA projection neurons.

Third, our experiments showing that atropine blocked the

switch from freezing to active behavior suggest that ventral

forebrain cholinergic circuits are critical for modulating the

quality of fear responses. Whether this switch is a direct conse-

quence of increased cortical arousal or is also in part due to

increased inhibition of medial CeA outputs that have been

proposed to be responsible for behavioral immobility is not

completely clear from our results. Our observation that atropine

was able to completely reverse the effects of 8-OH-DPAT at least

on freezing suggest that cholinergic mechanisms are necessary

(but not necessarily sufficient) to switch away from passive fear

(Figure 4E). The apparent reduced efficacy of atropine in re-

versing active behaviors inducedby theHtr1a agonist (Figure 4G)

suggests either that these are less sensitive to atropine or that

other circuits are involved.

Thus, our data suggest a model in which the activity of lateral

CeA projection neurons determines CeA outputs, switching

behavioral responses from freezing to risk assessment and

exploration (Figure 7). Under normal conditions (switch ON),

lateral CeA projection neurons are tonically inhibited by type I

neurons and medial CeA projection neurons are free to respond

to inputs and promote freezing.When type I neurons are silenced

(switch OFF) type II, oxytocin receptor-expressing lateral CeA

projection neurons are disinhibited, leading to increased lateral

CeA outputs to ventral forebrain and inhibition of medial CeA

outputs. CeA efferents to the ventral forebrain (NBM/SI) lead to

a disinhibition of cholinergic neurons and increased cortical

arousal. Blockade of cholinergic neurotransmission is able to

reverse the behavioral effects of the switch, suggesting that

CeA-ventral forebrain outputs play a critical role in the switch.

Such a circuitry is consistent with the suppression and facilita-

tion of fear responses reported after intra-CeA administration

of oxytocin and vasopressin receptor agonists, respectively

(Roozendaal et al., 1992) and is in agreement with existing

models of CeA function (Viviani and Stoop, 2008;Walker and

Davis, 2008; Ehrlich et al., 2009).

One possible confound in the interpretation of our fMRI results

is the possibility that low levels of expression of Htr1a outside

type I CeA neurons may have contributed to the signal observed.

Several lines of evidence suggest that such ectopic activation, if

present, is minimal and does not mediate the rCBV and behav-

ioral effects seen following 8-OH-DPAT treatment. First, similar

experiments in a line of mice expressing Htr1a under the same

promoter but showing expression selectively in dentate gyrus

granule cells of the hippocampus (Htr1aDG; Tsetsenis et al.,

2007) did not show any increase in cortical rCBV signal

(Figure S4) despite the fact that this line shows low levels of

Htr1a expression in CeA (Tsetsenis et al., 2007). Thus, low levels

of Htr1a do not appear to cause membrane hyperpolarization

sufficient to alter neuronal firing, and this conclusion is confirmed

by electrophysiological studies in slices taken from these mice

(Tsetsenis et al., 2007). Second, the ability of centrally delivered

atropine to suppress rCBV signal activation following 8-OH-

DPAT treatment argues against the effect being mediated by

activation of Htr1a within a local cortical circuit. Another possible
Neuron 67, 656–666, August 26, 2010 ª2010 Elsevier Inc. 661
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Figure 6. Type I CeA Cells Tonically Suppress Firing of Oxytocin-Responsive Neurons in Lateral CeA

Distinct firing signatures distinguished two major cell types in lateral CeA: (A) DAP+ type I and (F) DAP� type II neurons. Whole-cell recordings in lateral CeA

neurons of slices taken from Htr1aCeA mice demonstrated that bath application of 8-OH-DPAT (DPAT, 50 mM, 1–3 min) induced a significant decrease in spon-

taneous firing of type I cells (B and C, n = 7) and increase in firing of type II cells (G and H, n = 9). Type II cells (I–J, n = 7), but not type I cells (D and E, n = 5) showed

increased firing following application of the oxytocin receptor agonist, [Thr4, Gly7]-oxytocin (TGOT, 0.2 mM, 1–3min). (B, D, G, and I) Relativemean firing frequency

expressed as percentage of control value before drug delivery. (C, E, H, and J) Time course of the firing frequency of a representative cell. No significant changes

in neuronal firing following 8-OH-DPAT administration were seen in slices taken from Htr1aKO control mice (type I cells: 3.51 ± 0.88 to 3.05 ± 0.99 Hz, n = 7,

p = 0.13).
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confound derives from or use of a Htr1a knockout background

for our studies. While these mice do show significant behavioral

and physiological differences these are unlikely to have affected

our conclusions given the combination of pharmacological

(8-OH-DPAT versus vehicle) and genetic (Htr1aCeA versus

Htr1aKO) controls.

An important question raised by our findings is whether type I

CeA neurons are selectively involved in phasic, conditioned fear
Switch ON Switch O

freezing 

moting neocortical arousal. Blocking cholinergic neocortical activation (e.g., wi

passive to active behavior. Oxytocin receptor-expressing lateral CeA neurons a

project to hypothalamic and brainstem structures to promote freezing and parasy

AVPR, arginine/vasopressin receptor; arrows highlighted in white indicate relativ
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responses (Walker and Davis, 2008), or whether they also

actively modulate tonic, unconditioned behavior. The fact that

we detected cortical arousal following agonist treatment in

both unstimulated, anaesthetized and awake, freely moving

animals suggests that type I CeA neurons are tonically active

in the absence of any conditioned stimulus. However, active

behaviors, although in some cases present before stimulus

presentation, were significantly enhanced only during the tone
FF 

risk 
assessment 

Figure 7. Proposed Circuit by which CeA

Influences Active and Passive Fear

Responses

Under standard conditions (Switch ON) type I cells

are responsible for tonically inhibiting type II

oxytocin receptor-expressing neurons in lateral

CeA that project to nucleus basalis of Meynert

and substantia innominata (NBM/SI). When type I

cells are inhibited (Switch OFF), oxytocin receptor-

expressing GABAergic projection neurons in lateral

CeA are disinhibited. Increased firing of lateral CeA

projection neurons leads to inhibition of ventral fore-

brain interneurons that maintain suppression of

firing of cholinergic neurons responsible for pro-

th the muscarinic antagonist atropine) leads to a reversal of the switch from

lso directly inhibit vasopressin receptor-expressing medial CeA neurons that

mpathetic responses to aversive conditioned stimuli (OTR, oxytocin receptor;

e changes in neuronal firing).
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(data not shown) suggesting that relief of tonic inhibition in CeA

was not sufficient to moderate behaviors in the absence of

appropriate upstream inputs. Thus, we conclude that CeA disin-

hibition permits the expression of exploratory and risk assess-

ment behaviors in the presence of a fear stimulus, but that this

disinhibition is not sufficient to modulate unconditioned fear

responses that may converge at a lower level in the fear circuitry.

Another question of importance is whether the switch from

passive to active behavior we see reflects a change in the quality

of the fear response or rather a change in its intensity. Although

our observed behavioral switch is clearly one of quality, rather

than quantity, it is possible that it acts to regulate the activity

of a single downstream circuit. Lesions of the dorsal premamil-

lary nucleus, for example, can transform fear in the presence

of a predator from freezing to cautious exploration, and, contex-

tual fear of the predator from cautious to relaxed exploration

(Cezario et al., 2008), for example. Thus, the CeA switch may

be acting on a downstream rheostat-like circuit that dials

between freezing/risk assessment/nonfear in a way that is

consistent with the defensive distance hypothesis. Alternatively,

the CeA switch could be acting independently to suppress

passive and promote active behaviors. Our observation that

low doses of atropine (0.1 mg/kg) selectively reverses the effects

of 8-OH-DPAT on freezing in Htr1aCeA mice, while leaving active

behaviors unaffected (Figures 4G and 4H), suggests that

separate circuits may be involved in these two coping strategies.

A related question involves the degree to which variation in CeA

switch efficacymight explain individual variation in fear behavior.

It is possible, for example, that different set points of tonic

activity of type I CeA cells could predispose animals to a more

passive or active fear coping style. Future experiments aimed

at examining the role of defensive distance or intensity as well

as interindividual variability in modulating the CeA switch may

help in address these hypotheses.

In summary, we have applied fMRI and correlation analysis to

map circuits downstream of CeA that are involved in modulating

conditioned fear. Our findings demonstrate that CeA outputs to

ventral forebrain cholinergic neurons driving cortical arousal

are under tonic inhibition by type I neurons in CeA and that

modulation of their activity offers the animal a route to shift its

conditioned fear responses from passive to active behaviors.

These findings demonstrate that CeA circuits are involved in

determining both the magnitude and quality of conditioned fear

responses and is consistent with studies arguing in favor of

a more complex role for the amygdala in modulating fear coping

behavior (Walker and Davis, 2008;Wilensky et al., 2006).
EXPERIMENTAL PROCEDURES

Animals

All in vivo studies were conducted in accordance with the laws of the Italian

Ministry of Health (DL 116, 1992). Protocols were reviewed and approved

by a local animal care committee in accordance with the guidelines of the

Principles of Laboratory Animal Care (NIH publication 86-23, revised 1985).

fMRI experiments were performed in adult (>10 weeks) male mice. The trans-

genic lines used have been previously described (Tsetsenis et al., 2007). The

strains were maintained on a mixed C57BL/6J;CBA/J;129S6/SvEvTac back-

ground. Littermates were used for all control experiments. Experiments on

the effect of atropine sulfate on the inhibitory action of 8-OH-DPAT in wild-
type mice were performed in C57BL/6J male mice (Charles River Italia,

Como, Italy). Animals used in fMRI studies were singly housed with food and

water provided ad libitum and under controlled temperature (20�C–22�C),
humidity (45%–65%), and lighting (12 hr light/dark, lights on at 06:00 hr).

Animals used in behavioral studies were housed as previously described

(Tsetsenis et al., 2007).

Animal Anesthesia and Physiological Monitoring

Mice were anaesthetized with 4% isoflurane in a 1:1 oxygen/nitrogen mixture

(0.9 l/min + 0.9 l/min) within an induction chamber connected to a vaporizer

(Burtons Medical Equipment, UK). The animal was then placed supine on an

interactive heating pad (Harvard Apparatus, UK) and gaseous anesthesia

continuously delivered through a face mask. Mice were subsequently tracheo-

tomized and artificially ventilated (see below). The left femoral artery was

cannulated for compound administration, continuous blood pressure moni-

toring, infusion of paralyzing agent (pancuronium bromide, 0.5 mg/kg/hr,

Sigma-Aldrich, Italy), and blood sampling for measurement of arterial blood

gases. Htr1aCeA and wild-type animals were also fitted with an intraperitoneal

cannula to allow administration of anticholinergic drugs. Arterial blood gases

paCO2 and paO2weremeasured terminally and the values used retrospectively

to exclude subjects that presented parameters outside the physiological range

(20–50 mmHg for paCO2, > 80 mmHg for paO2). Mean weight and paCO2 levels

recorded are reported in Supplemental Information (Table S1). No statistically

significant difference in postacquisition paCO2 values between any of the

groups was observed (one-way ANOVA followed by Fisher’s LSD and

Hochberg’s correction for multiple comparisons with a = 0.05).

Tracheostomy

Prior to surgical incision, each mouse received a subcutaneous infiltration of

0.05% tetracaine solution at each surgical site (neck and femoral area) at

volume of 0.02 ml/point (0.04 ml/mouse). Tetracaine was chosen due to its

negligible degree of brain penetration (Ferrari et al., 2010). The neck and

femoral area were shaved with an electrical shaver and the skin disinfected.

Rolled gauze was placed under the neck in order to extend it and facilitate

the subsequent exposure of trachea for surgery incision. Amidline skin incision

was made along the length of the neck and, after separating the two halves of

the sternohyoid muscle, the trachea exposed. The incision covered the sublar-

yngeal region, and a G23 cannula (Vygon, France), shortened to 0.7 cm, was

inserted into the trachea. The cannula was then secured with silk suture thread

(3-0 Ethicon, Johnson-Johnson, Belgium) passed through the holes of its

plastic ‘‘butterfly.’’ The cannula was then connected to a ventilation pump

(Inspira ASV, Harvard Apparatus) and anesthetic gas delivery switched from

the mask to the pump. Ventilation parameters were 70 bpm and tidal volume

(Vt) in the range of 5.3–5.9 ml/kg. Starting Vt was chosen on the basis of

measurements performed on a separate group of wild-type mice (n = 10).

Femoral Artery Cannulation

Femoral artery cannulation was performed at an IF level of 3%. We chose to

cannulate the femoral artery instead of the femoral vein as customary in rat

surgery due to the former’s higher elasticity and resistance. This procedure

allowed for quicker surgery and higher throughput compared to vein cannula-

tion. The left leg of the animal was extended and taped on the surgical mat.

A skin incision of roughly one centimeter was made above the femoral area.

The left femoral artery was isolated and cannulated with a polyethylene

catheter (PE10, OD 0.61 mm, ID 0.28 mm) filled with heparinized physiologic

solution (25 UI/ml) containing 0.0375 mg/ml of pancuronium bromide that

was continuously infused (rate 6.7 ml/kg/h) throughout the experiment to

ensure constant neuromuscular blockade. This catheter was connected to

a blood-pressure transducer (Biopac Systems) through a flow/flush device

(CRITIFLO TA4004, Becton Dickinson). In order to allow for compound admin-

istration, a homemade Plexiglas Y-piece was placed in between the femoral

catheter and the MABP transducer. The PE10 catheter was connected to

the Y piece through a 2 cm PVC40 junction (OD 0.90 mm, ID 0.50 mm) inserted

into a piece of Silicone tubing (Fr 3). The two-way system allowed simulta-

neous recording of MABP and infusion of paralyzing agent plus the injection

of compounds (upon clamping of the opposite way to prevent the delivery of

compound in the wrong line). After surgery (25–35 min in duration) mice
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were placed into a customized stereotactic holder (Bruker, Germany) and

anesthesia lowered to 1.2%.

rCBV Measurement

MRI data were acquired using a Bruker Avance 4.7 Tesla system, a 72 mm

birdcage resonator for radiofrequency pulse transmit, and a Bruker curved

‘‘Mouse Brain’’ quadrature receive coil. The MR acquisition for each subject

comprised T2-weighted anatomical images using the RARE sequence (Hennig

et al., 1986; TReff = 5597 ms, TEeff = 76 ms, RARE factor 8, FOV 40 mm, 2563

256matrix, 24 contiguous 0.75mm slices) followed by a time series acquisition

with the same spatial coverage and similar parameters (TReff = 5436ms, TEeff =

112 ms, RARE factor 32, 1283 128matrix, 24 contiguous 0.75 mm slices), but

lower in-plane spatial resolution (312 mm2) giving a functional pixel volume of

�0.07 mm3. Two successive scans were averaged for a resulting time

resolution of 42 s.

Total MRI time series acquisition time was 70 min (100 repetitions) for all

groups. Following five reference images, 3.75 ml/g of the blood pool contrast

agent Endorem (Guerbet, France) was injected so that subsequent signal

changes would reflect alterations in relative cerebral blood volume (rCBV;

Mandeville et al., 1998). The dose of Endorem was selected to ensure a

mean signal decrease of �60% necessary to optimize the contrast-to-noise

ratio of the rCBV measurement as described (Mandeville et al., 1998). Each

subject received an intra-arterial injection of vehicle (saline, 5 ml/g) followed

by a challenge with 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT,

Sigma, Milano) 25 min later. Vehicle injection was performed 15 min after

administration of contrast agent. Htr1aCeA and wild-type littermates mice

received anticholinergic agents (0.3 mg/kg, i.p.) or saline vehicle between

intra-arterial vehicle and 8-OH-DPAT injections (14 min apart). The MRI time

series were acquired over a period of 25 min following the administration of

the 8-OH-DPAT challenge. The dose of 8-OH-DPAT and atropine were chosen

based on previous in vivo studies (Tsetsenis et al., 2007; Gasbarri et al., 1997;

Boccia et al., 2003; Baratti et al., 1979). Atropine sulfate is a nonselective

acetylcholine muscarinic receptor antagonist; atropine methyl-nitrate is

a non-brain-penetrant salt form of atropine. All compounds were injected at

1 ml/min. Compound injection was followed by administration of 0.2 ml of

saline to flush the intra-arterial line.

fMRI Data Analysis

rCBV time series data for each experiment were analyzed within the framework

of the general linear model (GLM) to obtain Z statistic maps (Worsley et al.,

1992). Signal intensity changes in the time series were then converted into

fractional rCBV changes on a pixel-wise basis using the transform (Mandeville

et al., 1998) rCBV(t) = ln(S(t)/B(t))/ln(B(t)/SPRE), where S(t) is the measured

signal, B(t) the estimated background signal in the absence of transient

functional stimuli, and SPRE the signal intensity prior to administration of the

contrast agent. B(t) was set equal to the mean signal intensity B0 during the

8.4 min (12 time points) period prior to compound injection. For each time

series, a rCBV time series surrounding the vehicle and 8-OH-DPAT injection

points were calculated independently using identical parameters, covering

8.4 min (12 time points) prechallenge baseline and 22.4 min (32 time points)

postchallenge window, normalized to a common injection time point. In

contrast to what we observed in the rat (Schwarz et al., 2003) the slow rate

of blood-pool contrast agent elimination from mouse blood resulted in negli-

gible signal drifts over the time-window examined, which did not require the

application of detrending corrections. The T2-weighted anatomical images

from each subject were coregistered by rigid body alignment to a brain

template using FLIRT, Version 5.63, part of FSL (FMRIB’s Software Library,

www.fmrib.ox.ac.uk/fsl) and applying the resulting transformation matrix to

the accompanying rCBV time series.

Two separate anatomical templates were created in order to account for the

presence of slight but significant differences in the size of the brain of the trans-

genic lines (KO, CeA, and DG) with respect to wild-types, with the latter

showing a reduced dorsoventral and horizontal extension. Average brain

templates were created by coregistering and overlaying all the anatomical

scans to a representative subjects using FSL/FLIRT (affine transformation,

6 degrees of freedom). Non-brain tissue was removed from the template using

FSL/BET (brain extraction tool) followed by manual removal of residual signal
664 Neuron 67, 656–666, August 26, 2010 ª2010 Elsevier Inc.
from spurious subcutaneous fat in posterior slices. The template thus obtained

(template 1) was then used to mask individual anatomical images. The final

template was created through a second iteration of the coregistration process

using individualmasked anatomicals andmasked template 1 (affine, 7 degrees

of freedom, FSL/FLIRT). The resulting transformationmatrix was applied to the

accompanying rCBV time series. The use of the paralyzing agent ensured that

nomotion-related effects were present in the time series. Data from all animals

were checked for motion following acquisition by subtraction of image frames

at beginning and end of the time series, and at intermediate points (e.g., before

and after injection) revealing no motion artifacts in all the subjects examined.

Data were analyzed as previously described (Schwarz et al., 2006, 2007b). In

brief, subjects were coregistered by rigid body alignment to a mouse brain

template using FLIRT, Version 5.63, part of FSL (www.fmrib.ox.ac.uk/fsl).

The template was created by coregistering and overlaying all the anatomical

scans onto a representative subject using FSL/FLIRT. Signal time course

analysis in pericranial ROIs of individual animals did not highlight significant

motion artifacts in any of the subjects imaged. Signal intensity changes were

converted into fractional rCBV changes (Mandeville et al., 1998). rCBV time

series before and after intra-arterial injections were calculated with 8 and

28 pre- and postchallenge time points, respectively. Ten and 18 time points

pre- and postadministration were used for intra-peritoneal administration.

Activation/deactivation maps were analyzed using FEAT Version 5.63, part

of FSL, with 0.8 mm spatial smoothing and model functions identified by

Wavelet Cluster Analysis (Schwarz et al., 2006). Two separate regressors

were identified for wild-type and Htr1aCeA subjects (Reg 1 and Reg 2,

Figure S5). Image analysis of Htr1aDG and Htr1aKO was performed using Reg

1 as no plausible regressor describing 8-OH-DPAT was found. Group compar-

isonswere carried out using FLAME (FMRIB’s Local Analysis ofMixed Effects).

Z (Gaussianised T/F) statistic images were thresholded using clusters deter-

mined by Z > 1.96 (unless otherwise described) and a corrected cluster signif-

icance threshold of p = 0.01 (Friston et al., 1994; Worsley et al., 1992). rCBV

time series for 8-OH-DPAT, vehicle, or atropine injections (Figures S1–S4)

were extracted bilaterally for specific regions of interest (ROIs) anatomically

defined based on a mouse stereotactic atlas (Paxinos and Franklin, 2003).

The effect of atropine pretreatment on the agonist response was assessed

using average rCBV over an 8–20 min postinjection time window and one-

way ANOVA followed by Fisher LSD. Results are quoted and displayed as

mean ± SEM unless otherwise indicated.

Unsmoothed rCBV time series for 8-OH-DPAT and vehicle injection in each

subject were extracted for specific regions of interest (ROIs) based on corre-

spondence between the anatomical images and stereotactic atlas of the

mouse brain (Paxinos and Franklin, 2003) using custom in-house software

written in IDL (Research Systems, Boulder, CO). rCBV time course data

were shown as group mean ± standard error (SEM). Regions examined

(and their approximate rostrocaudal position from zbregma) were amygdala

(�1.58 mm), caudate putamen (+0.74 mm), ventral dentate gyrus

(�4.24 mm), dorsal dentate gyrus (�1.34 mm), posterior dentate gyrus

(�3.16 mm), thalamus (�1.82 mm), hypothalamus (�1.82 mm), motor cortex

(+0.62 mm), somatosensory cortex (+0.02 mm), prefrontal cortex

(+1.54 mm), and cingulate cortex (+0.74 mm). All ROIs were drawn bilaterally.

Maps of correlated responses across subjects (Figure 3) were calculated

within a General Linear Model framework at the higher level using FSL with

FLAME as previously described (Schwarz et al., 2007b). Two reference

(seed) regions, left CeA (zbregma �0.6 mm) and left somatosensory cortex

(zbregma �0.9 mm), were selected a priori. Maps were thresholded using

clusters determined by Z > 1.6 and a corrected cluster significance threshold

of p = 0.01. Mean arterial blood pressure data were rebinned in 10 sample

subdivisions and plotted using 40 s bins (Figure S6).

Arterial blood pressure time courses were recorded using an intra-arterial

transducer and a 50 Hz sampling frequency (AcqKnowledge 3.1, Biopac

Systems, Goleta). Mean arterial blood pressure (MABP) was calculated by

temporally smoothing raw blood pressure traces using a moving average of

300 samples (6 s). MABP data were then rebinned in 10 subdivisions. Average

MABP response over a 0–20 min postinjection time window was used as a

summary measurement for statistical comparison between groups. Statistical

comparison of MABP and arterial blood gases (paCO2 and paO2) was per-

formed using one-way ANOVA followed by Fisher’s LSD (least significant

http://www.fmrib.ox.ac.uk/fsl
http://www.fmrib.ox.ac.uk/fsl
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difference) test using Statistica 8.0 (Statsoft, Tulsa, OK). To simplify data

presentation, MABP time course data were plotted using 40 s bins.

The composition of the experimental groups and treatments is summarized

as follows: Group 1 – Htr1aKO, vehicle/8-OH-DPAT, n = 8; Group 2 – Htr1aCeA,

vehicle/vehicle/8-OH-DPAT, n = 9; Group 3 – Htr1aCeA, vehicle/atropine-

sulfate/8-OH-DPAT, n = 5; Group 4 – Htr1aCeA, vehicle/atropine-methyl-

nitrate/8-OHDPAT, n = 5; Group 5 –Htr1aDG, vehicle/8-OH-DPAT, n = 6; Group

6 – wild-type, vehicle/8-OH-DPAT, n = 14; Group 7 – wild-type vehicle/vehicle/

8-OH-DPAT, n = 8; Group 8 – wild-type, vehicle/atropine-sulfate/8-OH-DPAT,

n = 8.

Immunohistochemistry

Undisturbed littermates were injected with 8-OH-DPAT (onemouse/genotype/

cage) and returned to their home cage for 90min before trans-cardial perfusion

with saline and paraformaldehyde under anesthesia. Brains were removed,

postfixed overnight, and rapidly frozen before cryosectioning (40 mm).

Anti-c-Fos (Calbiochem) immunohistochemistry was carried out on free-

floating coronal brain sections using the ABC detection system (Vector

Labs). Immunostaining was quantified manually from microscope images of

matched sections (two sections/animal; averaging between hemispheres)

with the aid of Image J software.

Behavioral Testing

Fear conditioning was carried out as previously described (Tsetsenis et al.,

2007). In brief, mice were exposed on day 1 to a partially conditioned tone

and a perfectly conditioned light stimulus (20 s stimulus coterminating with

0.5 mA, 1 s footshock, 33 tone-light-shock, 23 tone interspersed; tone:

3000 Hz, 85 dB), and tested for freezing during the tone delivered in a novel

cage on day 2 (3 min baseline period followed by 6 min tone presentation).

Behavioral data were extracted by manual scoring of video recordings from

the 3 min baseline and first 3 min of the tone presentation with the aid of

Observer software (Noldus, Wageningen, Netherlands). Digging was scored

when the animal was close to the edge of the cage and was using his paws

to dig and pull up the plastic flooring. Exploration was scored when the animal

made pronounced whole-body movements that extended across the cage.

Rearing included both wall and center rearing. All behaviors were recorded

as total duration of the activity. All scoring was performed blind to genotype

and treatment.

Electrophysiological Recordings

Mice (P21-P55 littermates) were deeply anesthetized with halothane and

decapitated, and whole brains were rapidly removed and immersed for

10 min in oxygenated (95% O2, 5% CO2 [pH 7.4]) ice-cold ACSF containing

125 mM NaCl, 2.5 mM KCl, 1.25 mM NaH2PO4, 1.0 mM MgCl2, 2.0 mM

CaCl2, 10 mM glucose, and 26 mM NaHCO3. Horizontal (250 mm) slices

were cut at 4�C with a vibratome, placed in a chamber containing oxygenated

ACSF, and allowed to recover for 2 hr at room temperature. Individual slices

were then transferred to the submerged slice-recording chamber and main-

tained at 32�C and constantly superfused with oxygenated ACSF. Central

amygdala regions were identified using the hippocampus CA2 and lateral

amygdala regions as references. Recording electrode resistance was

8–12 MU when filled with an intracellular solution of 140 mM K-gluconate,

4 mM MgCl2, 0.5 mM EGTA, 10 mM HEPES, 2 mM MgATP, and 0.5 mM

NaGTP (pH 7.3, 280mOsm). Whole-cell recordings weremade using an ampli-

fier (Multiclamp 700B, Axon Instruments) and signals filtered and digitized at

10 kHz with an A/D converter (Digidata 1322A, Axon Instruments) and stored

using pClamp 9 software (Axon Instruments). Spontaneous firing was re-

corded in current-clamp configuration with neurons held near the spiking

threshold (�55 ± 5mV) by depolarizing current injection. In some experiments

spontaneous frequency was enhanced by lowering ACSF Ca2+ concentration

to 0.5 mM. Baseline activity was monitored for at least 4 min and stable base-

line spiking frequency obtained before applying agonists. Drugs were freshly

prepared from stock solutions and applied to the slice by a gravity-driven

perfusion system (flow rate = 2 ml/min, one exchange every 3 min). Washout

of agonists with ACSF reestablished spiking to initial levels within 10–15 min.

Spontaneous spiking activity was analyzed by Mini Analysis Program

(Synaptosoft, Decatur, GA) with detection parameters adjusted for each
data file to obtain correct values of peak amplitude and frequency both in

simple events and complex bursts. Mean spike frequency time course was

obtained by averaging the interevent interval in 10 s bins. Effects of drugs

application were quantified by averaging spike frequency at baseline and

the effect plateau (1–2 min each).

Statistical Testing

Statistical testing of behavioral data was carried out using ANOVA and Fisher

LSD post-hoc testing in cases of significance, except for the atropine study in

which we tested the a priori hypothesis that atropine would reverse the

behavioral effects of 8-OH-DPAT and used t tests. c-Fos and electrophysio-

logical data were analyzed by t test. Correlation was assessed by Pearson’s

regression testing. Statistical testing of imaging data is described above or

in the figure legends.
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