106 research outputs found

    Premature Decline of Serum Total Testosterone in HIV-Infected Men in the HAART-Era

    Get PDF
    BackgroundTestosterone (T) deficiency remains a poorly understood issue in men with Human Immunodeficiency Virus (HIV). We investigated the gonadal status in HIV-infected men in order to characterize T deficiency and to identify predictive factors for low serum T.Methodology/Principal FindingsWe performed a cross-sectional, observational study on 1325 consecutive HIV male outpatients, most of them having lipodystrophy. Serum total T<300 ng/dL was used as the threshold for biochemical T deficiency. Morning serum total T, luteinizing hormone (LH), estradiol, HIV parameters, and body composition parameters by CT-scan and Dual-Energy-X-ray-Absorptiometry were measured in each case. Sexual behavior was evaluated in a subset of 247 patients. T deficiency was found in 212 subjects, especially in the age range 40\u201359, but was frequent even in younger patients. T deficiency occurred mainly in association with low/normal serum LH. Adiposity was higher in subjects with T deficiency (p<0.0001) and both visceral adipose tissue and body mass index were the main negative predictors of serum total T. Osteoporosis and erectile dysfunction were present in a similar percentage in men with or without T deficiency.Conclusions/SignificancePremature decline of serum T is common (16%) among young/middle-aged HIV-infected men and is associated with inappropriately low/normal LH and increased visceral fat. T deficiency occurs at a young age and may be considered an element of the process of premature or accelerated aging known to be associated with HIV infection. The role of HIV and/or HIV infection treatments, as well as the role of the general health state on the gonadal axis, remains, in fact, to be elucidated. Due to the low specificity of signs and symptoms of hypogonadism in the context of HIV, caution is needed in the diagnosis of hypogonadism in HIV-infected men with biochemical low serum T levels

    Salivary cortisol differs with age and sex and shows inverse associations with WHR in Swedish women: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most studies on cortisol have focused on smaller, selected samples. We therefore aimed to sex-specifically study the diurnal cortisol pattern and explore its association with abdominal obesity in a large unselected population.</p> <p>Methods</p> <p>In 2001–2004, 1811 men and women (30–75 years) were randomly selected from the Vara population, south-western Sweden (81% participation rate). Of these, 1671 subjects with full information on basal morning and evening salivary cortisol and anthropometric measurements were included in this cross-sectional study. Differences between groups were examined by general linear model and by logistic and linear regression analyses.</p> <p>Results</p> <p>Morning and Δ-cortisol (morning – evening cortisol) were significantly higher in women than men. In both genders older age was significantly associated with higher levels of all cortisol measures, however, most consistently with evening cortisol. In women only, age-adjusted means of WHR were significantly lower in the highest compared to the lowest quartile of morning cortisol (p = 0.036) and Δ-cortisol (p < 0.001), respectively. Furthermore, when comparing WHR above and below the mean, the age-adjusted OR in women for the lowest quartile of cortisol compared to the highest was 1.5 (1.0–2.2, p = 0.058) for morning cortisol and 1.9 (1.3–2.8) for Δ-cortisol. All findings for Δ-cortisol remained after adjustments for multiple covariates and were also seen in a linear regression analysis (p = 0.003).</p> <p>Conclusion</p> <p>In summary, our findings of generally higher cortisol levels in women than men of all ages are novel and the stronger results seen for Δ-cortisol as opposed to morning cortisol in the association with WHR emphasise the need of studying cortisol variation intra-individually. To our knowledge, the associations in this study have never before been investigated in such a large population sample of both men and women. Our results therefore offer important knowledge on the descriptive characteristics of cortisol in relation to age and gender, and on the impact that associations previously seen between cortisol and abdominal obesity in smaller, selected samples have on a population level.</p

    Genetic Determinants of Circulating Estrogen Levels and Evidence of a Causal Effect of Estradiol on Bone Density in Men.

    Get PDF
    CONTEXT: Serum estradiol (E2) and estrone (E1) levels exhibit substantial heritability. OBJECTIVE: To investigate the genetic regulation of serum E2 and E1 in men. DESIGN, SETTING, AND PARTICIPANTS: Genome-wide association study in 11,097 men of European origin from nine epidemiological cohorts. MAIN OUTCOME MEASURES: Genetic determinants of serum E2 and E1 levels. RESULTS: Variants in/near CYP19A1 demonstrated the strongest evidence for association with E2, resolving to three independent signals. Two additional independent signals were found on the X chromosome; FAMily with sequence similarity 9, member B (FAM9B), rs5934505 (P = 3.4 × 10-8) and Xq27.3, rs5951794 (P = 3.1 × 10-10). E1 signals were found in CYP19A1 (rs2899472, P = 5.5 × 10-23), in Tripartite motif containing 4 (TRIM4; rs17277546, P = 5.8 × 10-14), and CYP11B1/B2 (rs10093796, P = 1.2 × 10-8). E2 signals in CYP19A1 and FAM9B were associated with bone mineral density (BMD). Mendelian randomization analysis suggested a causal effect of serum E2 on BMD in men. A 1 pg/mL genetically increased E2 was associated with a 0.048 standard deviation increase in lumbar spine BMD (P = 2.8 × 10-12). In men and women combined, CYP19A1 alleles associated with higher E2 levels were associated with lower degrees of insulin resistance. CONCLUSIONS: Our findings confirm that CYP19A1 is an important genetic regulator of E2 and E1 levels and strengthen the causal importance of E2 for bone health in men. We also report two independent loci on the X-chromosome for E2, and one locus each in TRIM4 and CYP11B1/B2, for E1

    Symptomatic benefits of testosterone treatment in patient subgroups : a systematic review, individual participant data meta-analysis, and aggregate data meta-analysis

    Get PDF
    Acknowledgments This work was supported by the UK National Institute for Health and Care Research (NIHR)'s Health Technology Assessment Programme (project number 17/68/01). The views expressed herein are those of the authors and not necessarily those of the National Health Service, the NIHR Health Technology Assessment Programme, or the UK Department of Health and Social Care. The Health Services Research Unit at the University of Aberdeen is funded by the Chief Scientist Office of the Scottish Government Health and Social Care Directorates. The Section of Endocrinology and Investigative Medicine at Imperial College London is funded by grants from the Medical Research Council, the Biotechnology and Biological Sciences Research Council, NIHR, an Integrative Mammalian Biology Capacity Building Award, and an FP7-HEALTH-2009-241592 EuroCHIP grant, and is supported by the NIHR Biomedical Research Centre Funding Scheme. WSD is funded by an NIHR Research Professorship. CNJ is funded by an NIHR Post-Doctoral Fellowship. ShB receives NIH research grant funding. The authors are grateful to the clinical and methodological experts and patient partners who contributed to the advisory group for this study.Peer reviewedPublisher PD

    Symptomatic benefits of testosterone treatment in patient subgroups: a systematic review, individual participant data meta-analysis, and aggregate data meta-analysis

    Get PDF
    Background Testosterone replacement therapy is known to improve sexual function in men younger than 40 years with pathological hypogonadism. However, the extent to which testosterone alleviates sexual dysfunction in older men and men with obesity is unclear, despite the fact that testosterone is being increasingly prescribed to these patient populations. We aimed to evaluate whether subgroups of men with low testosterone derive any symptomatic benefit from testosterone treatment. Methods We did a systematic review and meta-analysis to evaluate characteristics associated with symptomatic benefit of testosterone treatment versus placebo in men aged 18 years and older with a baseline serum total testosterone concentration of less than 12 nmol/L. We searched major electronic databases (MEDLINE, Embase, Science Citation Index, and the Cochrane Central Register of Controlled Trials) and clinical trial registries for reports published in English between Jan 1, 1992, and Aug 27, 2018. Anonymised individual participant data were requested from the investigators of all identified trials. Primary (cardiovascular) outcomes from this analysis have been published previously. In this report, we present the secondary outcomes of sexual function, quality of life, and psychological outcomes at 12 months. We did a one-stage individual participant data meta-analysis with a random-effects linear regression model, and a two-stage meta-analysis integrating individual participant data with aggregated data from studies that did not provide individual participant data. This study is registered with PROSPERO, CRD42018111005. Findings 9871 citations were identified through database searches. After exclusion of duplicates and publications not meeting inclusion criteria, 225 full texts were assessed for inclusion, of which 109 publications reporting 35 primary studies (with a total 5601 participants) were included. Of these, 17 trials provided individual participant data (3431 participants; median age 67 years [IQR 60–72]; 3281 [97%] of 3380 aged ≥40 years) Compared with placebo, testosterone treatment increased 15-item International Index of Erectile Function (IIEF-15) total score (mean difference 5·52 [95% CI 3·95–7·10]; τ²=1·17; n=1412) and IIEF-15 erectile function subscore (2·14 [1·40–2·89]; τ²=0·64; n=1436), reaching the minimal clinically important difference for mild erectile dysfunction. These effects were not found to be dependent on participant age, obesity, presence of diabetes, or baseline serum total testosterone. However, absolute IIEF-15 scores reached during testosterone treatment were subject to thresholds in patient age and baseline serum total testosterone. Testosterone significantly improved Aging Males’ Symptoms score, and some 12-item or 36-item Short Form Survey quality of life subscores compared with placebo, but it did not significantly improve psychological symptoms (measured by Beck Depression Inventory). Interpretation In men aged 40 years or older with baseline serum testosterone of less than 12 nmol/L, short-to-mediumterm testosterone treatment could provide clinically meaningful treatment for mild erectile dysfunction, irrespective of patient age, obesity, or degree of low testosterone. However, due to more severe baseline symptoms, the absolute level of sexual function reached during testosterone treatment might be lower in older men and men with obesity

    Symptomatic benefits of testosterone treatment in patient subgroups: a systematic review, individual participant data meta-analysis, and aggregate data meta-analysis

    Get PDF
    BACKGROUND: Testosterone replacement therapy is known to improve sexual function in men younger than 40 years with pathological hypogonadism. However, the extent to which testosterone alleviates sexual dysfunction in older men and men with obesity is unclear, despite the fact that testosterone is being increasingly prescribed to these patient populations. We aimed to evaluate whether subgroups of men with low testosterone derive any symptomatic benefit from testosterone treatment. METHODS: We did a systematic review and meta-analysis to evaluate characteristics associated with symptomatic benefit of testosterone treatment versus placebo in men aged 18 years and older with a baseline serum total testosterone concentration of less than 12 nmol/L. We searched major electronic databases (MEDLINE, Embase, Science Citation Index, and the Cochrane Central Register of Controlled Trials) and clinical trial registries for reports published in English between Jan 1, 1992, and Aug 27, 2018. Anonymised individual participant data were requested from the investigators of all identified trials. Primary (cardiovascular) outcomes from this analysis have been published previously. In this report, we present the secondary outcomes of sexual function, quality of life, and psychological outcomes at 12 months. We did a one-stage individual participant data meta-analysis with a random-effects linear regression model, and a two-stage meta-analysis integrating individual participant data with aggregated data from studies that did not provide individual participant data. This study is registered with PROSPERO, CRD42018111005. FINDINGS: 9871 citations were identified through database searches. After exclusion of duplicates and publications not meeting inclusion criteria, 225 full texts were assessed for inclusion, of which 109 publications reporting 35 primary studies (with a total 5601 participants) were included. Of these, 17 trials provided individual participant data (3431 participants; median age 67 years [IQR 60-72]; 3281 [97%] of 3380 aged ≥40 years) Compared with placebo, testosterone treatment increased 15-item International Index of Erectile Function (IIEF-15) total score (mean difference 5·52 [95% CI 3·95-7·10]; τ 2=1·17; n=1412) and IIEF-15 erectile function subscore (2·14 [1·40-2·89]; τ 2=0·64; n=1436), reaching the minimal clinically important difference for mild erectile dysfunction. These effects were not found to be dependent on participant age, obesity, presence of diabetes, or baseline serum total testosterone. However, absolute IIEF-15 scores reached during testosterone treatment were subject to thresholds in patient age and baseline serum total testosterone. Testosterone significantly improved Aging Males' Symptoms score, and some 12-item or 36-item Short Form Survey quality of life subscores compared with placebo, but it did not significantly improve psychological symptoms (measured by Beck Depression Inventory). INTERPRETATION: In men aged 40 years or older with baseline serum testosterone of less than 12 nmol/L, short-to-medium-term testosterone treatment could provide clinically meaningful treatment for mild erectile dysfunction, irrespective of patient age, obesity, or degree of low testosterone. However, due to more severe baseline symptoms, the absolute level of sexual function reached during testosterone treatment might be lower in older men and men with obesity. FUNDING: National Institute for Health and Care Research Health Technology Assessment Programme

    A Validated Age-Related Normative Model for Male Total Testosterone Shows Increasing Variance but No Decline after Age 40 Years

    Get PDF
    The diagnosis of hypogonadism in human males includes identification of low serum testosterone levels, and hence there is an underlying assumption that normal ranges of testosterone for the healthy population are known for all ages. However, to our knowledge, no such reference model exists in the literature, and hence the availability of an applicable biochemical reference range would be helpful for the clinical assessment of hypogonadal men. In this study, using model selection and validation analysis of data identified and extracted from thirteen studies, we derive and validate a normative model of total testosterone across the lifespan in healthy men. We show that total testosterone peaks [mean (2.5-97.5 percentile)] at 15.4 (7.2-31.1) nmol/L at an average age of 19 years, and falls in the average case [mean (2.5-97.5 percentile)] to 13.0 (6.6-25.3) nmol/L by age 40 years, but we find no evidence for a further fall in mean total testosterone with increasing age through to old age. However we do show that there is an increased variation in total testosterone levels with advancing age after age 40 years. This model provides the age related reference ranges needed to support research and clinical decision making in males who have symptoms that may be due to hypogonadism.Publisher PDFPeer reviewe
    corecore