405 research outputs found

    On deriving p-mode parameters for inclined solar-like stars

    Full text link
    Thanks to their high quality, new and upcoming asteroseismic observations - with CoRoT, Kepler, and from the ground... - can benefit from the experience gained with helioseismology. We focus in this paper on solar-like oscillations, for which the inclination of the rotation axis is unknown. We present a theoretical study of the errors of p-mode parameters determined by means of a maximum-likelihood estimator, and we also analyze correlations and biases. We have used different, complementary approaches: we have performed either semi-analytical computation of the Hessian matrix, fitting of single mean profiles, or Monte Carlo simulations. We give first analytical approximations for the errors of frequency, inclination and rotational splitting. The determination of the inclination is very challenging for the common case of slow rotators (like the Sun), making difficult the determination of a reliable rotational splitting. Moreover, due to the numerous correlations, biases - more or less significant - can appear in the determination of various parameters in the case of bad inclination fittings, especially when a locking at 90 degrees occurs. This issue concerning inclination locking is also discussed. Nevertheless, the central frequency and some derived parameters such as the total power of the mode are free of such biases.Comment: 9 pages, 6 figures, to appear in A&

    Optimal Masks for Low-Degree Solar Acoustic Modes

    Get PDF
    We suggest a solution to an important problem of observational helioseismology of the separation of lines of solar acoustic (p) modes of low angular degree in oscillation power spectra by constructing optimal masks for Doppler images of the Sun. Accurate measurements of oscillation frequencies of low-degree modes are essential for the determination of the structure and rotation of the solar core. However, these measurements for a particular mode are often affected by leakage of other p modes arising when the Doppler images are projected on to spherical-harmonics masks. The leakage results in overlaping peaks corresponding to different oscillation modes in the power spectra. In this paper we present a method for calculating optimal masks for a given (target) mode by minimizing the signals of other modes appearing in its vicinity. We apply this method to time series of 2 years obtained from Michelson Doppler Imager (MDI) instrument on board SOHO space mission and demonstrate its ability to reduce efficiently the mode leakage.Comment: to be published in Astrophys.J. Letter

    Mercury emissions and stable isotopic compositions at Vulcano Island (Italy)

    Get PDF
    Sampling and analyses methods for determining the stable isotopic compositions of Hg in an active volcanic system were tested and optimized at the volcanic complex of Vulcano (Aeolian Islands, Italy). Condensed gaseous fumarole Hg(fum) T , plume gaseous elemental Hg(g) 0 and plume particulate Hg(p) II were obtained at fumaroles F0, F5, F11, and FA. The average total Hg emissions, based on HgT/SO2 in condensed fumarolic gases and plumes, range from 2.5 to 10.1 kg y−1, in agreement with published values [Ferrara, R., Mazzolai, B., Lanzillotta, E., Nucaro, E., Pirrone, N., 2000. Volcanoes as emission sources of atmospheric mercury in the Mediterranean Basin. Sci. Total Environ. 259(1–3), 115–121; Aiuppa, A., Bagnato, E., Witt, M.L.I., Mather, T.A., Parello, F., Pyle, D.M., Martin, R.S., 2007. Real-time simultaneous detection of volcanic Hg and SO2 at La Fossa Crater, Vulcano (Aeolian Islands, Sicily). Geophys. Res. Lett. 34(L21307).]. Plume Hg(p) II increases with distance from the fumarole vent, at the expense of Hg(g) 0 and indicates significant in-plume oxidation and condensation of fumarole Hg(fum) T . Relative to the NIST SRM3133 Hg standard, the stable isotopic compositions of Hg are ÎŽ202Hg(fum) T =−0.74‰±0.18 (2SD, n=4) for condensed gaseous fumarole Hg(fum) T , ÎŽ202Hg(g) 0 =−1.74‰±0.36 (2SD, n=1) for plume gaseous elemental Hg(g) 0 at the F0 fumarole, and ÎŽ202Hg(p) II =−0.11‰±0.18 (2SD, n=4) for plume particulate Hg(p) II . The enrichment of Hg(p) II in the heavy isotopes and Hg(g) 0 in the light isotopes relative to the total condensed fumarolic Hg(fum) T gas complements the speciation data and demonstrates a gas-particle fractionation occurring after the gas expulsion inambient T° atmosphere. A first order Rayleigh equilibriumcondensation isotope fractionation model yields a fractionation factor αcond-gas of 1.00135±0.00058

    On the detection of Lorentzian profiles in a power spectrum: A Bayesian approach using ignorance priors

    Get PDF
    Aims. Deriving accurate frequencies, amplitudes, and mode lifetimes from stochastically driven pulsation is challenging, more so, if one demands that realistic error estimates be given for all model fitting parameters. As has been shown by other authors, the traditional method of fitting Lorentzian profiles to the power spectrum of time-resolved photometric or spectroscopic data via the Maximum Likelihood Estimation (MLE) procedure delivers good approximations for these quantities. We, however, show that a conservative Bayesian approach allows one to treat the detection of modes with minimal assumptions (i.e., about the existence and identity of the modes). Methods. We derive a conservative Bayesian treatment for the probability of Lorentzian profiles being present in a power spectrum and describe an efficient implementation that evaluates the probability density distribution of parameters by using a Markov-Chain Monte Carlo (MCMC) technique. Results. Potentially superior to "best-fit" procedure like MLE, which only provides formal uncertainties, our method samples and approximates the actual probability distributions for all parameters involved. Moreover, it avoids shortcomings that make the MLE treatment susceptible to the built-in assumptions of a model that is fitted to the data. This is especially relevant when analyzing solar-type pulsation in stars other than the Sun where the observations are of lower quality and can be over-interpreted. As an example, we apply our technique to CoRoT observations of the solar-type pulsator HD 49933.Comment: 12 pages, 11 figures, accepted for publication in Astronomy and Astrophysic

    Exoplanets or Dynamic Atmospheres? The Radial Velocity and Line Shape Variations of 51 Pegasi and Tau Bootis

    Full text link
    Because of our relatively low spectral resolution, we compare our observations with Gray's line bisector data by fitting observed line profiles to an expansion in terms of orthogonal (Hermite) functions. To obtain an accurate comparison, we model the emergent line profiles from rotating and pulsating stars, taking the instrumental point spread function into account. We describe this modeling process in detail. We find no evidence for line profile or strength variations at the radial velocity period in either 51 Peg or in Tau Boo. For 51 Peg, our upper limit for line shape variations with 4.23-day periodicity is small enough to exclude with 10 sigma confidence the bisector curvature signal reported by Gray & Hatzes; the bisector span and relative line depth signals reported by Gray (1997) are also not seen, but in this case with marginal (2 sigma) confidence. We cannot, however, exclude pulsations as the source of 51 Peg's radial velocity variation, because our models imply that line shape variations associated with pulsations should be much smaller than those computed by Gray & Hatzes; these smaller signals are below the detection limits both for Gray & Hatzes' data and for our own. Tau Boo's large radial velocity amplitude and v*sin(i) make it easier to test for pulsations in this star. Again we find no evidence for periodic line-shape changes, at a level that rules out pulsations as the source of the radial velocity variability. We conclude that the planet hypothesis remains the most likely explanation for the existing data.Comment: 44 pages, 19 figures, plain TeX, accepted to ApJS (companion to letter astro-ph/9712279

    Oscillation frequencies and mode lifetimes in alpha Centauri A

    Full text link
    We analyse our recently-published velocity measurements of alpha Cen A (Butler et al. 2004). After adjusting the weights on a night-by-night basis in order to optimize the window function to minimize sidelobes, we extract 42 oscillation frequencies with l=0 to 3 and measure the large and small frequency separations. We give fitted relations to these frequencies that can be compared with theoretical models and conclude that the observed scatter about these fits is due to the finite lifetimes of the oscillation modes. We estimate the mode lifetimes to be 1-2 d, substantially shorter than in the Sun.Comment: Accepted by Ap

    Fourier Analysis of Gapped Time Series: Improved Estimates of Solar and Stellar Oscillation Parameters

    Full text link
    Quantitative helio- and asteroseismology require very precise measurements of the frequencies, amplitudes, and lifetimes of the global modes of stellar oscillation. It is common knowledge that the precision of these measurements depends on the total length (T), quality, and completeness of the observations. Except in a few simple cases, the effect of gaps in the data on measurement precision is poorly understood, in particular in Fourier space where the convolution of the observable with the observation window introduces correlations between different frequencies. Here we describe and implement a rather general method to retrieve maximum likelihood estimates of the oscillation parameters, taking into account the proper statistics of the observations. Our fitting method applies in complex Fourier space and exploits the phase information. We consider both solar-like stochastic oscillations and long-lived harmonic oscillations, plus random noise. Using numerical simulations, we demonstrate the existence of cases for which our improved fitting method is less biased and has a greater precision than when the frequency correlations are ignored. This is especially true of low signal-to-noise solar-like oscillations. For example, we discuss a case where the precision on the mode frequency estimate is increased by a factor of five, for a duty cycle of 15%. In the case of long-lived sinusoidal oscillations, a proper treatment of the frequency correlations does not provide any significant improvement; nevertheless we confirm that the mode frequency can be measured from gapped data at a much better precision than the 1/T Rayleigh resolution.Comment: Accepted for publication in Solar Physics Topical Issue "Helioseismology, Asteroseismology, and MHD Connections

    Polysorbate 80 Inhibition of Pseudomonas aeruginosa Biofilm Formation and Its Cleavage by the Secreted Lipase LipA

    Get PDF
    Surface-associated bacterial communities known as biofilms are an important source of nosocomial infections. Microorganisms such as Pseudomonas aeruginosa can colonize the abiotic surfaces of medical implants, leading to chronic infections that are difficult to eradicate. Our study demonstrates that polysorbate 80 (PS80), a surfactant commonly added to food and medicines, is able to inhibit biofilm formation by P. aeruginosa on a variety of surfaces, including contact lenses

    Calculation of Spectral Darkening and Visibility Functions for Solar Oscillations

    Get PDF
    Calculations of spectral darkening and visibility functions for the brightness oscillations of the Sun resulting from global solar oscillations are presented. This has been done for a broad range of the visible and infrared continuum spectrum. The procedure for the calculations of these functions includes the numerical computation of depth-dependent derivatives of the opacity caused by p modes in the photosphere. A radiative-transport code was used for this purpose to get the disturbances of the opacities from temperature and density fluctuations. The visibility and darkening functions are obtained for adiabatic oscillations under the assumption that the temperature disturbances are proportional to the undisturbed temperature of the photosphere. The latter assumption is the only way to explore any opacity effects since the eigenfunctions of p-mode oscillations have not been obtained so far. This investigation reveals that opacity effects have to be taken into account because they dominate the violet and infrared part of the spectrum. Because of this dominance, the visibility functions are negative for those parts of the spectrum. Furthermore, the darkening functions show a wavelength-dependent change of sign for some wavelengths owing to these opacity effects. However, the visibility and darkening functions under the assumptions used contradict the observations of global p-mode oscillations, but it is beyond doubt that the opacity effects influence the brightness fluctuations of the Sun resulting from global oscillations

    Solar-like oscillations in the metal-poor subgiant nu Indi: II. Acoustic spectrum and mode lifetime

    Full text link
    Convection in stars excites resonant acoustic waves which depend on the sound speed inside the star, which in turn depends on properties of the stellar interior. Therefore, asteroseismology is an unrivaled method to probe the internal structure of a star. We made a seismic study of the metal-poor subgiant star nu Indi with the goal of constraining its interior structure. Our study is based on a time series of 1201 radial velocity measurements spread over 14 nights obtained from two sites, Siding Spring Observatory in Australia and ESO La Silla Observatory in Chile. The power spectrum of the high precision velocity time series clearly presents several identifiable peaks between 200 and 500 uHz showing regularity with a large and small spacing of 25.14 +- 0.09 uHz and 2.96 +- 0.22 uHz at 330 uHz. Thirteen individual modes have been identified with amplitudes in the range 53 to 173 cm/s. The mode damping time is estimated to be about 16 days (1-sigma range between 9 and 50 days), substantially longer than in other stars like the Sun, the alpha Cen system or the giant xi Hya.Comment: 5 pages, 7 figures, A&A accepte
    • 

    corecore