55 research outputs found

    Blind Deconvolution of Ultrasonic Signals Using High-Order Spectral Analysis and Wavelets

    Full text link
    Defect detection by ultrasonic method is limited by the pulse width. Resolution can be improved through a deconvolution process with a priori information of the pulse or by its estimation. In this paper a regularization of the Wiener filter using wavelet shrinkage is presented for the estimation of the reflectivity function. The final result shows an improved signal to noise ratio with better axial resolution.Comment: 8 pages, CIARP 2005, LNCS 377

    Vectorial Signatures for Symbol Discrimination

    Get PDF
    Colloque avec actes et comité de lecture. internationale.International audienceIn this paper, we present a method based on vectorial signatures, which aims at discriminating, by a fast technique, symbols represented within technical documents. The use of signatures on this kind of document has an obvious interest. Indeed, considering a raw vectorial description of the graphical layer of a technical document (e.g. a set of arcs and segments), signatures can be used to perform a pre-processing step before a "traditional" graphics recognition processing, or can be used to establish a classification that can be sufficient to feed a further indexation step. To compute vectorial signatures, we have based our approach on a method proposed by Etemadi et al., who study spatial relations between primitives to solve a vision problem. We considerer five types of relations, invariant to transformations like rotation or scaling, between neighboring segments: parallelism with or without overlapping, collinearity, L junctions and V junctions. A quality factor is computed for each of the relations, computable with low requirements of power. The signature of all models of symbols that could be found in a given document are computed and matched against the signature of the document, in order to determine what symbols the document is likely to contain. The quality factor associated with each relation is used to prune relations whose quality factor is too low. We present finally the first tests obtained with this method, and we discuss the improvements we plan to do

    Recursive Projection Profiling for Text-Image Separation

    No full text

    Image-based assessment of microvascular function and structure in collagen XV- and XVIII-deficient mice

    Get PDF
    Collagen XV and XVIII are ubiquitous constituents of basement membranes. We aimed to study the physiological roles of these two components of the permeability barrier non-invasively in striated muscle in mice deficient in collagen XV or XVIII by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Structural information was obtained with transmission electron microscopy (TEM). MR data were analysed by two different analysis methods to quantify tissue perfusion and microcirculatory exchange parameters to rule out data analysis method-dependent results. Control mice (C57BL/6J Ola/Hsd strain) or mice lacking either collagen XV (Col15a1−/−) or XVIII (Col18a1−/−) were included in the study. MR images were acquired using a preclinical system using gadodiamide (Gd-DTPA-BMA, molecular weight 0.58 kDa) as a tracer. Exchange capacity (permeability (P)–surface area (S) product relative to blood flow (FB)) was increased in test mice compared to controls, but the contributions from P, S, and FB were different in these two phenotypes. FB was significantly increased in Col18a1−/−, but slightly decreased in Col15a1−/−. PS was significantly increased only in Col18a1−/− even though P was increased in both phenotypes suggesting S might also be reduced in Col15a1−/− mice. Immunohistochemistry and electron microscopy demonstrated alterations in capillary density and morphology in both knockout mouse strains in comparison to the control mice. Both collagen XV and XVIII are important for maintaining normal capillary permeability in the striated muscle. DCE-MRI and the perfusion analyses successfully determined microvascular haemodynamic parameters of genetically modified mice and gave results consistent with more invasive methods

    Effects of antimicrobials on Shiga toxin production in high-virulent Shiga toxin-producing Escherichia coli

    No full text
    Purpose: Antimicrobial treatment of Shiga toxin-producing Escherichia coli (STEC) infections is controversial because antimicrobials may stimulate Shiga toxin (Stx) production, and thereby increase the risk of developing haemolytic uremic syndrome (HUS). Previous in vitro studies have shown this mainly in infections caused by STEC serotype O157:H7. The aim of this study was to investigate induction of Stx transcription and production in different serotypes of STEC isolated from severely ill patients, following their exposure in vitro to six different classes of antimicrobials. Methods: We investigated Stx transcription and production in 12 high-virulent STEC strains, all carrying the stx2a gene, of six different serotypes following their exposure to six classes of antimicrobials. Liquid cultures of the STEC strains were incubated with sub-inhibitory concentrations of the antimicrobials. We used reversetranscription quantitative PCR to measure the relative expression of Stx2a mRNA and an enzyme-linked immunosorbent assay to quantify Stx production. Results: In general the antibiotics tested showed only minor effects on transcriptional levels of Stx2a. Ciprofloxacin caused an increase of Stx production in all but two strains, while gentamicin, meropenem and azithromycin did not induce Stx production in any of the STEC strains examined. STEC O104:H4 was the serotype that in greatest extent responded to antimicrobial exposure with an increase of stx2a transcription and Stx production. Conclusion: Gentamicin, meropenem and azithromycin exposure did not result in elevated Stx production. We recommend that this finding is investigated further in the search for candidates for future antimicrobial treatment of STEC

    Effects of antimicrobials on Shiga toxin production in high-virulent Shiga toxin-producing Escherichia coli

    Get PDF
    Purpose Antimicrobial treatment of Shiga toxin-producing Escherichia coli (STEC) infections is controversial because antimicrobials may stimulate Shiga toxin (Stx) production, and thereby increase the risk of developing haemolytic uremic syndrome (HUS). Previous in vitro studies have shown this mainly in infections caused by STEC serotype O157:H7. The aim of this study was to investigate induction of Stx transcription and production in different serotypes of STEC isolated from severely ill patients, following their exposure in vitro to six different classes of antimicrobials. Methods We investigated Stx transcription and production in 12 high-virulent STEC strains, all carrying the stx2a gene, of six different serotypes following their exposure to six classes of antimicrobials. Liquid cultures of the STEC strains were incubated with sub-inhibitory concentrations of the antimicrobials. We used reverse-transcription quantitative PCR to measure the relative expression of Stx2a mRNA and an enzyme-linked immunosorbent assay to quantify Stx production. Results In general the antibiotics tested showed only minor effects on transcriptional levels of Stx2a. Ciprofloxacin caused an increase of Stx production in all but two strains, while gentamicin, meropenem and azithromycin did not induce Stx production in any of the STEC strains examined. STEC O104:H4 was the serotype that in greatest extent responded to antimicrobial exposure with an increase of stx2a transcription and Stx production. Conclusion Gentamicin, meropenem and azithromycin exposure did not result in elevated Stx production. We recommend that this finding is investigated further in the search for candidates for future antimicrobial treatment of STEC
    • …
    corecore