56 research outputs found
Multiplication and germination of somatic embryos of American ginseng derived from suspension cultures and biochemical and molecular analyses of plantlets
Seedlings from 11 seed sources (lines) of American ginseng from different geographic regions were evaluated on Murashige and Skoog medium (MS) containing 10 μM α-naphthaleneacetic acid (NAA) and 9 μM 2,4-dichlorophenoxyacetic acid (2,4-D) for callus development and somatic embryo formation. Leaf and stem explants callused at a frequency of 18.2–100%, while somatic embryos were produced from these calluses at a frequency of 25–87.5% after 5 mo. Suspension cultures of nine lines were established by transferring embryogenic callus to MS liquid medium with NAA and 2,4-D at 2.5 and 2.25 μM, respectively, and maintained by subcultures every 8 wk. Globular somatic embryos from these cultures were germinated on half-strength MS containing 1% activated charcoal, and roots >5 mm in length developed within 3 wk. A 7-d exposure to 3 μM gibberellic acid and 5 μM 6-benzylaminopurine significantly enhanced shoot development and promoted further root development. The chromosome number, profiles of the common triterpenoid saponins (ginsenosides), and random amplified polymorphic DNA (RAPD) banding patterns in plantlets derived from suspension culture were compared to those of zygotic seedlings. The chromosome number in root tip cells and suspension cultured cells was 48. Patterns of the six major ginsenosides, determined by thin-layer chromatography, in leaves of tissue culture-derived plantlets were identical to those in seedlings. RAPD patterns among plantlets originating from the same tissue-cultured line were mostly identical; however, altered patterns were observed in some lines that had been maintained in suspension culture for almost 4 yr. The results from this study indicate that propagation of desired ginseng genotypes in suspension culture can be achieved, and that biochemical and molecular markers can be used for authentication of resulting plantlets
The effects of promoter on transient expression in conifer cell lines
SummaryProtoplasts from suspension cultures of somatic embryos of white spruce (Picea glauca Moench Voss) were electroporated with plasmids containing the chimeric genes for chloramphenicol acetyl transferase (CAT) or β-glucuronidase (GUS), under control of one of three promoters. Transient CAT gene expression of approximately equal magnitude resulted when the CAT gene was fused to either the cauliflower mosaic virus (CaMV) 35S promoter or the nopaline synthase (NOS) promoter. When the CAT gene was fused to a tandem repeat CaMV 35S promoter (pPBI-363), CAT enzyme activity compared to NOS or 35S promoters increased up to eightfold (cell line WS-34), and were up to 100-fold greater than control (electroporated without plasmid). Comparatively, protoplasts of black spruce (Picea mariana Mill) and jack pine (Pinus banksiana Lamb.), electroporated with pPBI-363, produced increases in CAT activity compared to control of 90-fold and 70-fold, respectively. White spruce (WS-34) protoplasts were subsequently electroporated with the GUS gene fused to the tandem repeat CaMV 35S promoter. Comparatively, GUS enzyme activity increased up to tenfold compared to GUS fused to a CaMV 35S promoter. The results indicated that transient expression of the CAT and GUS genes was influenced by the type of promoter and cell line used, as well as by electroporation conditions
- …