195 research outputs found
Disorder-induced critical behavior in driven diffusive systems
Using dynamic renormalization group we study the transport in driven
diffusive systems in the presence of quenched random drift velocity with
long-range correlations along the transport direction. In dimensions
we find fixed points representing novel universality classes of
disorder-dominated self-organized criticality, and a continuous phase
transition at a critical variance of disorder. Numerical values of the scaling
exponents characterizing the distributions of relaxation clusters are in good
agreement with the exponents measured in natural river networks
Spectral and Dynamical Properties in Classes of Sparse Networks with Mesoscopic Inhomogeneities
We study structure, eigenvalue spectra and diffusion dynamics in a wide class
of networks with subgraphs (modules) at mesoscopic scale. The networks are
grown within the model with three parameters controlling the number of modules,
their internal structure as scale-free and correlated subgraphs, and the
topology of connecting network. Within the exhaustive spectral analysis for
both the adjacency matrix and the normalized Laplacian matrix we identify the
spectral properties which characterize the mesoscopic structure of sparse
cyclic graphs and trees. The minimally connected nodes, clustering, and the
average connectivity affect the central part of the spectrum. The number of
distinct modules leads to an extra peak at the lower part of the Laplacian
spectrum in cyclic graphs. Such a peak does not occur in the case of
topologically distinct tree-subgraphs connected on a tree. Whereas the
associated eigenvectors remain localized on the subgraphs both in trees and
cyclic graphs. We also find a characteristic pattern of periodic localization
along the chains on the tree for the eigenvector components associated with the
largest eigenvalue equal 2 of the Laplacian. We corroborate the results with
simulations of the random walk on several types of networks. Our results for
the distribution of return-time of the walk to the origin (autocorrelator)
agree well with recent analytical solution for trees, and it appear to be
independent on their mesoscopic and global structure. For the cyclic graphs we
find new results with twice larger stretching exponent of the tail of the
distribution, which is virtually independent on the size of cycles. The
modularity and clustering contribute to a power-law decay at short return
times
On unitarizability in the case of classical p-adic groups
In the introduction of this paper we discuss a possible approach to the
unitarizability problem for classical p-adic groups. In this paper we give some
very limited support that such approach is not without chance. In a forthcoming
paper we shall give additional evidence in generalized cuspidal rank (up to)
three.Comment: This paper is a merged and revised version of ealier preprints
arXiv:1701.07658 and arXiv:1701.07662. The paper is going to appear in the
Proceedings of the Simons Symposium on Geometric Aspects of the Trace Formul
Hypernuclear weak decay puzzle
A general shell model formalism for the nonmesonic weak decay of the hypernuclei has been developed. It involves a partial wave expansion of the emitted nucleon waves, preserves naturally the antisymmetrization between the escaping particles and the residual core, and contains as a particular case the weak Λ-core coupling formalism. The extreme particle-hole model and the quasiparticle Tamm-Dancoff approximation are explicitly worked out. It is shown that the nuclear structure manifests itself basically through the Pauli principle, and a very simple expression is derived for the neutron- and proton-induced decays rates Γn and Γp, which does not involve the spectroscopic factors. We use the standard strangeness-changing weak ΛN→NN transition potential which comprises the exchange of the complete pseudoscalar and vector meson octets (π,η,K,ρ,ω,K*), taking into account some important parity-violating transition operators that are systematically omitted in the literature. The interplay between different mesons in the decay of ¹²ΛC is carefully analyzed. With the commonly used parametrization in the one-meson-exchange model (OMEM), the calculated rate ΓNM = Γn + Γp is of the order of the free Λ decay rate Γ⁰(ΓthNM ≅ Γ⁰) and is consistent with experiments. Yet the measurements of Γn/p = Γn / Γp and of Γp are not well accounted for by the theory (Γthn/p ≲ 0.42,Γthp ≳ 0.60Γ⁰). It is suggested that, unless additional degrees of freedom are incorporated, the OMEM parameters should be radically modified.Facultad de Ciencias Exacta
Bloggers Behavior and Emergent Communities in Blog Space
Interactions between users in cyberspace may lead to phenomena different from
those observed in common social networks. Here we analyse large data sets about
users and Blogs which they write and comment, mapped onto a bipartite graph. In
such enlarged Blog space we trace user activity over time, which results in
robust temporal patterns of user--Blog behavior and the emergence of
communities. With the spectral methods applied to the projection on weighted
user network we detect clusters of users related to their common interests and
habits. Our results suggest that different mechanisms may play the role in the
case of very popular Blogs. Our analysis makes a suitable basis for theoretical
modeling of the evolution of cyber communities and for practical study of the
data, in particular for an efficient search of interesting Blog clusters and
further retrieval of their contents by text analysis
Critical exponents at the ferromagnetic transition in tetrakis(diethylamino)ethylene-C (TDAE-C)
Critical exponents at the ferromagnetic transition were measured for the
first time in an organic ferromagnetic material tetrakis(dimethylamino)ethylene
fullerene[60] (TDAE-C). From a complete magnetization-temperature-field
data set near we determine the susceptibility and
magnetization critical exponents and respectively, and the field vs. magnetization exponent at of
. Hyperscaling is found to be violated by , suggesting that the onset of ferromagnetism can be
related to percolation of a particular contact configuration of C
molecular orientations.Comment: 5 pages, including 3 figures; to appear in Phys. Rev. Let
HERBAL PRODUCTS AS AN ALTERNATIVE TO ANTIBIOTICS: APPLICATION POSSIBILITIES AND LIMITATIONS
Antimicrobial resistance (AMR) has developed as
one of the top 10 global public health threats
facing humanity. As the nosocomial bacterial
strains are being increasingly resistant to most
clinically available antibiotics, there is a constant
need for exploration of new substances
that could kill them or inhibit their growth, or
alternatively inhibit some of their essential virulence
factors to counteract the lack of new antibacterials
and the rise of antibiotic resistance,
plants could represent a potential solution.
Plants produce a variety of bioactive secondary
metabolites that could be used to fuel the future
discovery pipeline. Aim of the present study was
to examine inhibitory activity of the supercritical
extract of J. communis L. green pseudofructus
(7SCO2) against the growth, biofilm production
and several virulence factors of significant nosocomial
bacterial pathogens. The extract was
obtained by fractional extraction with supercritical
CO2, and the qualitative and quantitative
analysis was performed using the GC-FID/MS
method. Clinical isolates of Pseudomonas aeruginosa,Acinetobacter baumannii, Staphylococcus
aureus (methicillin-sensitive-MSSA and methicillin-
resistant - MRSA), Enterococcus faecalis, and
Klebsiella pneumoniae, as well as their antibiotic
resistance profiles, were obtained from the Clinical
Hospital Centre “Dr Dragiša Mišović Dedinje”.
Minimum inhibitory concentrations (MICs) of
the 7SCO2 were determined by broth-microdilution
method. Examination of the anti-adhesive
effect of the extract was carried out using the
spectrophotometric method. The pyocyanin
production of Pseudomonas aeruginosa was determined
by the method described by Rampioni
et al. Most significant findings of this study
are potent antivirulence activity of the 7SCO2
against P. aeruginosa through the inhibition of
pyocyanin production. In addition, the biofilm
production of A. baumannii was inhibited by the
7SCO2 in concentration 50 μg/mL. Finally, notable
antivirulence activity of the 7SCO2 against
E. faecalis and S. aureus was detected, since it
significantly inhibited collagen and laminin adhesion
of these pathogens.Book of abstract: From biotechnology to human and planetary health XIII congress of microbiologists of Serbia with international participation Mikromed regio 5, ums series 24: 4th – 6th april 2024, Mona Plaza hotel, Belgrade, Serbi
Covariant and Heavy Quark Symmetric Quark Models
There exist relativistic quark models (potential or MIT-bag) which satisfy
the heavy quark symmetry (HQS) relations among meson decay constants and form
factors. Covariant construction of the momentum eigenstates, developed here,
can correct for spurious center-of-mass motion contributions.Proton form factor
and M1 transitions in quarkonia are calculated. Explicit expression for the
Isgur-Wise function is found and model determined deviations from HQS are
studied. All results depend on the model parameters only. No additional ad hoc
assumptions are needed.Comment: 34 pages (2 figures not included but avaliable upon request), LATEX,
(to be published in Phys.Rev.D
Interpretative and predictive modelling of Joint European Torus collisionality scans
Transport modelling of Joint European Torus (JET) dimensionless collisionality scaling experiments in various operational scenarios is presented. Interpretative simulations at a fixed radial position are combined with predictive JETTO simulations of temperatures and densities, using the TGLF transport model. The model includes electromagnetic effects and collisions as well as (E)over-right-arrow x (b)over-right-arrow shear in Miller geometry. Focus is on particle transport and the role of the neutral beam injection (NBI) particle source for the density peaking. The experimental 3-point collisionality scans include L-mode, and H-mode (D and H and higher beta D plasma) plasmas in a total of 12 discharges. Experimental results presented in (Tala et al 2017 44th EPS Conf.) indicate that for the H-mode scans, the NBI particle source plays an important role for the density peaking, whereas for the L-mode scan, the influence of the particle source is small. In general, both the interpretative and predictive transport simulations support the experimental conclusions on the role of the NBI particle source for the 12 JET discharges.Peer reviewe
- …