8,397 research outputs found

    The effect of crystal orientation on the cryogenic strength of hydroxide catalysis bonded sapphire

    Get PDF
    Hydroxide catalysis bonding has been used in gravitational wave detectors to precisely and securely join components of quasi-monolithic silica suspensions. Plans to operate future detectors at cryogenic temperatures has created the need for a change in the test mass and suspension material. Mono-crystalline sapphire is one candidate material for use at cryogenic temperatures and is being investigated for use in the KAGRA detector. The crystalline structure of sapphire may influence the properties of the hydroxide catalysis bond formed. Here, results are presented of studies of the potential influence of the crystal orientation of sapphire on the shear strength of the hydroxide catalysis bonds formed between sapphire samples. The strength was tested at approximately 8 K; this is the first measurement of the strength of such bonds between sapphire at such reduced temperatures. Our results suggest that all orientation combinations investigated produce bonds of sufficient strength for use in typical mirror suspension designs, with average strengths >23 MPa

    Direct evidence for ferromagnetic spin polarization in gold nanoparticles

    Get PDF
    We report the first direct observation of ferromagnetic spin polarization of Au nanoparticles with a mean diameter of 1.9 nm using X-ray magnetic circular dichroism (XMCD). Owing to the element selectivity of XMCD, only the gold magnetization is explored. Magnetization of gold atoms estimated by XMCD shows a good agreement with the results obtained by conventional magnetometry. This result is evidence of intrinsic spin polarization in nano-sized gold.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Mechanical quality factor of a sapphire fiber at cryogenic temperatures

    Get PDF
    A mechanical quality factor of 1.1×1071.1 \times 10^{7} was obtained for the 199 Hz bending vibrational mode in a monocrystalline sapphire fiber at 6 K. Consequently, we confirm that pendulum thermal noise of cryogenic mirrors used for gravitational wave detectors can be reduced by the sapphire fiber suspension.Comment: To be published to Physiscs Letters A. Number of pages: 10 Number of figures: 5 Number of tables:

    Novel Magnetic and Thermodynamic Properties of Thiospinel Compound CuCrZrS4_{4}

    Get PDF
    We have carried out dc magnetic susceptibility, magnetization and specific heat measurements on thiospinel CuCrZrS4_{4}. Below TC∗=T_{\rm C}^{*} = 58 K, dc magnetic susceptibility and magnetization data show ferromagnetic behavior with a small spontaneous magnetization 0.27 μB/\mu_{\rm B}/f. u.. In dc magnetic susceptibility, large and weak irreversibilities are observed below Tf=T_{\rm f} = 6 K and in the range Tf<T<TC∗T_{\rm f}< T < T_{\rm C}^{*} respectively. We found that there is no anomaly as a peak or step in the specific heat at TC∗T_{\rm C}^{*}.Comment: 11 pages, 4 figure

    Force measurements of a superconducting-film actuator for a cryogenic interferometric gravitational-wave detector

    Full text link
    We measured forces applied by an actuator with a YBCO film at near 77 K for the Large-scale Cryogenic Gravitational-wave Telescope (LCGT) project. An actuator consisting of both a YBCO film of 1.6 micrometers thickness and 0.81 square centimeters area and a solenoid coil exerted a force of up to 0.2 mN on a test mass. The presented actuator system can be used to displace the mirror of LCGT for fringe lock of the interferometer.Comment: 9 pages, 3 figure

    Design and performance of the muon monitor for the T2K neutrino oscillation experiment

    Full text link
    This article describes the design and performance of the muon monitor for the T2K (Tokaito-Kamioka) long baseline neutrino oscillation experiment. The muon monitor consists of two types of detector arrays: ionization chambers and silicon PIN photodiodes. It measures the intensity and profile of muons produced, along with neutrinos, in the decay of pions. The measurement is sensitive to the intensity and direction of the neutrino beam. The linearity and stability of the detectors were measured in beam tests to be within 2.4% and 1.5%, respectively. Based on the test results, the precision of the beam direction measured by the muon monitor is expected to be 0.25 mrad.Comment: 22 page
    • …
    corecore