1,646 research outputs found

    Perspective Systems in Roman Second Style Wall-painting

    Get PDF
    This is the published version

    Phylogenetic Studies In Oenothera: Further Analysis Of Plants From The Southeastern United States

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141025/1/ajb210440.pd

    Hierarchical formation of bulgeless galaxies II: Redistribution of angular momentum via galactic fountains

    Get PDF
    Within a fully cosmological hydrodynamical simulation, we form a galaxy which rotates at 140 km/s, and is characterised by two loose spiral arms and a bar, indicative of a Hubble Type SBc/d galaxy. We show that our simulated galaxy has no classical bulge, with a pure disc profile at z=1, well after the major merging activity has ended. A long-lived bar subsequently forms, resulting in the formation of a secularly-formed "pseudo" bulge, with the final bulge-to-total light ratio B/T=0.21. We show that the majority of gas which loses angular momentum and falls to the central region of the galaxy during the merging epoch is blown back into the hot halo, with much of it returning later to form stars in the disc. We propose that this mechanism of redistribution of angular momentum via a galactic fountain, when coupled with the results from our previous study which showed why gas outflows are biased to have low angular momentum, can solve the angular momentum/bulgeless disc problem of the cold dark matter paradigm.Comment: 9 Pages, 10 Figures, accepted MNRAS version. Comments welcom

    Within-Season Nest Reuse by Mountain Plovers (\u3ci\u3eCharadrius Montanus\u3c/i\u3e) in Eastern Colorado

    Get PDF
    The Mountain Plover (Charadrius montanus) is a declining migratory shorebird that nests on shortgrass prairies across the western Great Plains. This ground-nesting species exhibits an uncommon split-clutch mating system, in which each member of a pair simultaneously incubates a nest and uniparental care continues throughout brood-rearing. We report on an observation of within-season nest reuse in this species. To our knowledge, this report includes the first documented occurrence of 2 different Mountain Plovers using the same nest cup in the same breeding season. Nest reuse could represent a time- and energy-saving strategy for renesting individuals

    Forming Disk Galaxies in Lambda CDM Simulations

    Full text link
    We used fully cosmological, high resolution N-body + SPH simulations to follow the formation of disk galaxies with rotational velocities between 135 and 270 km/sec in a Lambda CDM universe. The simulations include gas cooling, star formation, the effects of a uniform UV background and a physically motivated description of feedback from supernovae. The host dark matter halos have a spin and last major merger redshift typical of galaxy sized halos as measured in recent large scale N--Body simulations. The simulated galaxies form rotationally supported disks with realistic exponential scale lengths and fall on both the I-band and baryonic Tully Fisher relations. An extended stellar disk forms inside the Milky Way sized halo immediately after the last major merger. The combination of UV background and SN feedback drastically reduces the number of visible satellites orbiting inside a Milky Way sized halo, bringing it in fair agreement with observations. Our simulations predict that the average age of a primary galaxy's stellar population decreases with mass, because feedback delays star formation in less massive galaxies. Galaxies have stellar masses and current star formation rates as a function of total mass that are in good agreement with observational data. We discuss how both high mass and force resolution and a realistic description of star formation and feedback are important ingredients to match the observed properties of galaxies.Comment: Revised version after the referee's comments. Conclusions unchanged. 2 new plots. MNRAS in press. 20 plots. 21 page

    Combinatorial Bounds and Characterizations of Splitting Authentication Codes

    Full text link
    We present several generalizations of results for splitting authentication codes by studying the aspect of multi-fold security. As the two primary results, we prove a combinatorial lower bound on the number of encoding rules and a combinatorial characterization of optimal splitting authentication codes that are multi-fold secure against spoofing attacks. The characterization is based on a new type of combinatorial designs, which we introduce and for which basic necessary conditions are given regarding their existence.Comment: 13 pages; to appear in "Cryptography and Communications

    MaGICC baryon cycle: the enrichment history of simulated disc galaxies

    Get PDF
    Using cosmological galaxy formation simulations from the MaGICC (Making Galaxies in a Cosmological Context) project, spanning stellar mass from ∼107 to 3 × 1010 M⊙, we trace the baryonic cycle of infalling gas from the virial radius through to its eventual participation in the star formation process. An emphasis is placed upon the temporal history of chemical enrichment during its passage through the corona and circumgalactic medium. We derive the distributions of time between gas crossing the virial radius and being accreted to the star-forming region (which allows for mixing within the corona), as well as the time between gas being accreted to the star-forming region and then ultimately forming stars (which allows for mixing within the disc). Significant numbers of stars are formed from gas that cycles back through the hot halo after first accreting to the star-forming region. Gas entering high-mass galaxies is pre-enriched in low-mass proto-galaxies prior to entering the virial radius of the central progenitor, with only small amounts of primordial gas accreted, even at high redshift (z ∼ 5). After entering the virial radius, significant further enrichment occurs prior to the accretion of the gas to the star-forming region, with gas that is feeding the star-forming region surpassing 0.1 Z⊙ by z = 0. Mixing with halo gas, itself enriched via galactic fountains, is thus crucial in determining the metallicity at which gas is accreted to the disc. The lowest mass simulated galaxy (Mvir ∼ 2 × 1010 M⊙, with M⋆ ∼ 107 M⊙), by contrast, accretes primordial gas through the virial radius and on to the disc, throughout its history. Much like the case for classical analytical solutions to the so-called ‘G-dwarf problem’, overproduction of low-metallicity stars is ameliorated by the interplay between the time of accretion on to the disc and the subsequent involvement in star formation – i.e. due to the inefficiency of star formation. Finally, gas outflow/metal removal rates from star-forming regions as a function of galactic mass are presented

    Galaxy Formation with local photoionisation feedback I. Methods

    Full text link
    We present a first study of the effect of local photoionising radiation on gas cooling in smoothed particle hydrodynamics simulations of galaxy formation. We explore the combined effect of ionising radiation from young and old stellar populations. The method computes the effect of multiple radiative sources using the same tree algorithm used for gravity, so it is computationally efficient and well resolved. The method foregoes calculating absorption and scattering in favour of a constant escape fraction for young stars to keep the calculation efficient enough to simulate the entire evolution of a galaxy in a cosmological context to the present day. This allows us to quantify the effect of the local photoionisation feedback through the whole history of a galaxy`s formation. The simulation of a Milky Way like galaxy using the local photoionisation model forms ~ 40 % less stars than a simulation that only includes a standard uniform background UV field. The local photoionisation model decreases star formation by increasing the cooling time of the gas in the halo and increasing the equilibrium temperature of dense gas in the disc. Coupling the local radiation field to gas cooling from the halo provides a preventive feedback mechanism which keeps the central disc light and produces slowly rising rotation curves without resorting to extreme feedback mechanisms. These preliminary results indicate that the effect of local photoionising sources is significant and should not be ignored in models of galaxy formation.Comment: Accepted for Publication in MNRAS, 13 pages, 13 figure

    Breathing in Low Mass Galaxies: A Study of Episodic Star Formation

    Full text link
    We simulate the collapse of isolated dwarf galaxies using SPH + N-Body simulations including a physically motivated description of the effects of supernova feedback. As the gas collapses and stars form, the supernova feedback disrupts enough gas to temporarily quench star formation. The gas flows outward into a hot halo, where it cools until star formation can continue once more and the cycle repeats. The star formation histories of isolated Local Group dwarf galaxies exhibit similar episodic bursts of star formation. We examine the mass dependence of the stellar velocity dispersions and find that they are no less than half the velocity of the halos measured at the virial radius.Comment: 5 pages, 3 figures, accepted ApJ. Full resolution figures and movies available at http://hpcc.astro.washington.edu/feedbac
    • …
    corecore