76 research outputs found

    The sacral chordoma margin

    Get PDF
    [Objective]: Aim of the manuscript is to discuss how to improve margins in sacral chordoma. [Background]: Chordoma is a rare neoplasm, arising in half cases from the sacrum, with reported local failure in >50% after surgery. [Methods]: A multidisciplinary meeting of the “Chordoma Global Consensus Group” was held in Milan in 2017, focusing on challenges in defining and achieving optimal margins in chordoma with respect to surgery, definitive particle radiation therapy (RT) and medical therapies. This review aims to report on the outcome of the consensus meeting and to provide a summary of the most recent evidence in this field. Possible new ways forward, including on-going international clinical studies, are discussed. [Results]: En-bloc tumor-sacrum resection is the cornerstone of treatment of primary sacral chordoma, aiming to achieve negative microscopic margins. Radical definitive particle therapy seems to offer a similar outcome compared to surgery, although confirmation in comparative trials is lacking; besides there is still a certain degree of technical variability across institutions, corresponding to different fields of treatment and different tumor coverage. To address some of these questions, a prospective, randomized international study comparing surgery versus definitive high-dose RT is ongoing. Available data do not support the routine use of any medical therapy as (neo)adjuvant/cytoreductive treatment. [Conclusion]: Given the significant influence of margins status on local control in patients with primary localized sacral chordoma, the clear definition of adequate margins and a standard local approach across institutions for both surgery and particle RT is vital for improving the management of these patients

    Phylogeny of Echinoderm Hemoglobins

    Get PDF
    Recent genomic information has revealed that neuroglobin and cytoglobin are the two principal lineages of vertebrate hemoglobins, with the latter encompassing the familiar myoglobin and α-globin/β-globin tetramer hemoglobin, and several minor groups. In contrast, very little is known about hemoglobins in echinoderms, a phylum of exclusively marine organisms closely related to vertebrates, beyond the presence of coelomic hemoglobins in sea cucumbers and brittle stars. We identified about 50 hemoglobins in sea urchin, starfish and sea cucumber genomes and transcriptomes, and used Bayesian inference to carry out a molecular phylogenetic analysis of their relationship to vertebrate sequences, specifically, to assess the hypothesis that the neuroglobin and cytoglobin lineages are also present in echinoderms.The genome of the sea urchin Strongylocentrotus purpuratus encodes several hemoglobins, including a unique chimeric 14-domain globin, 2 androglobin isoforms and a unique single androglobin domain protein. Other strongylocentrotid genomes appear to have similar repertoires of globin genes. We carried out molecular phylogenetic analyses of 52 hemoglobins identified in sea urchin, brittle star and sea cucumber genomes and transcriptomes, using different multiple sequence alignment methods coupled with Bayesian and maximum likelihood approaches. The results demonstrate that there are two major globin lineages in echinoderms, which are related to the vertebrate neuroglobin and cytoglobin lineages. Furthermore, the brittle star and sea cucumber coelomic hemoglobins appear to have evolved independently from the cytoglobin lineage, similar to the evolution of erythroid oxygen binding globins in cyclostomes and vertebrates.The presence of echinoderm globins related to the vertebrate neuroglobin and cytoglobin lineages suggests that the split between neuroglobins and cytoglobins occurred in the deuterostome ancestor shared by echinoderms and vertebrates

    Neonatal cerebrovascular autoregulation.

    Get PDF
    Cerebrovascular pressure autoregulation is the physiologic mechanism that holds cerebral blood flow (CBF) relatively constant across changes in cerebral perfusion pressure (CPP). Cerebral vasoreactivity refers to the vasoconstriction and vasodilation that occur during fluctuations in arterial blood pressure (ABP) to maintain autoregulation. These are vital protective mechanisms of the brain. Impairments in pressure autoregulation increase the risk of brain injury and persistent neurologic disability. Autoregulation may be impaired during various neonatal disease states including prematurity, hypoxic-ischemic encephalopathy (HIE), intraventricular hemorrhage, congenital cardiac disease, and infants requiring extracorporeal membrane oxygenation (ECMO). Because infants are exquisitely sensitive to changes in cerebral blood flow (CBF), both hypoperfusion and hyperperfusion can cause significant neurologic injury. We will review neonatal pressure autoregulation and autoregulation monitoring techniques with a focus on brain protection. Current clinical therapies have failed to fully prevent permanent brain injuries in neonates. Adjuvant treatments that support and optimize autoregulation may improve neurologic outcomes

    Therapy of traumatic neuropathy of the optic nerve

    No full text
    corecore