25 research outputs found

    Sequestration of free cholesterol in cell membranes by prions correlates with cytoplasmic phospholipase A2 activation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The transmissible spongiform encephalopathies (TSEs), otherwise known as the prion diseases, occur following the conversion of the normal cellular prion protein (PrP<sup>C</sup>) to an alternatively folded isoform (PrP<sup>Sc</sup>). The accumulation of PrP<sup>Sc </sup>within the brain leads to neurodegeneration through an unidentified mechanism. Since many neurodegenerative disorders including prion, Parkinson's and Alzheimer's diseases may be modified by cholesterol synthesis inhibitors, the effects of prion infection on the cholesterol balance within neuronal cells were examined.</p> <p>Results</p> <p>We report the novel observation that prion infection altered the membrane composition and significantly increased total cholesterol levels in two neuronal cell lines (ScGT1 and ScN2a cells). There was a significant correlation between the concentration of free cholesterol in ScGT1 cells and the amounts of PrP<sup>Sc</sup>. This increase was entirely a result of increased amounts of free cholesterol, as prion infection reduced the amounts of cholesterol esters in cells. These effects were reproduced in primary cortical neurons by the addition of partially purified PrP<sup>Sc</sup>, but not by PrP<sup>C</sup>. Crucially, the effects of prion infection were not a result of increased cholesterol synthesis. Stimulating cholesterol synthesis via the addition of mevalonate, or adding exogenous cholesterol, had the opposite effect to prion infection on the cholesterol balance. It did not affect the amounts of free cholesterol within neurons; rather, it significantly increased the amounts of cholesterol esters. Immunoprecipitation studies have shown that cytoplasmic phospholipase A<sub>2 </sub>(cPLA<sub>2</sub>) co-precipitated with PrP<sup>Sc </sup>in ScGT1 cells. Furthermore, prion infection greatly increased both the phosphorylation of cPLA<sub>2 </sub>and prostaglandin E<sub>2 </sub>production.</p> <p>Conclusion</p> <p>Prion infection, or the addition of PrP<sup>Sc</sup>, increased the free cholesterol content of cells, a process that could not be replicated by the stimulation of cholesterol synthesis. The presence of PrP<sup>Sc </sup>increased solubilisation of free cholesterol in cell membranes and affected their function. It increased activation of the PLA<sub>2 </sub>pathway, previously implicated in PrP<sup>Sc </sup>formation and in PrP<sup>Sc</sup>-mediated neurotoxicity. These observations suggest that the neuropathogenesis of prion diseases results from PrP<sup>Sc </sup>altering cholesterol-sensitive processes. Furthermore, they raise the possibility that disturbances in membrane cholesterol are major triggering events in neurodegenerative diseases.</p

    Influence of membrane cholesterol on modulation of the GABA(A) receptor by neuroactive steroids and other potentiators

    No full text
    1. The influence of membrane cholesterol on some pharmacological properties of the GABA(A) receptor was investigated in acutely dissociated rat hippocampal neurones with whole cell patch clamp recording. The cholesterol levels were varied between 56% and 235% control using methyl-β-cyclodextrin as the cholesterol carrier. 2. Enrichment of neurones with cholesterol increased the effects of the non-steroidal GABA potentiators propofol, flunitrazepam and pentobarbitone. A similar result was obtained after pre-incubation of neurones with epicholesterol, the 3α-hydroxy isomer of cholesterol. 3. In contrast, the effects of the steroidal GABA potentiators pregnanolone and alfaxalone were reduced by cholesterol enrichment, but not by epicholesterol. Depletion of membrane cholesterol increased the potentiation of GABA by pregnanolone and alfaxalone but did not affect the non-steroidal potentiators. 4. The steroidal antagonist of GABA, pregnenolone sulphate, reduced the maximum response to GABA. This effect, also, was diminished in cholesterol-enriched neurones and enhanced in cholesterol-depleted neurones. 5. The effects of the cholesterol manipulations that were selective for the steroidal modulators of GABA are suggested to arise from direct interactions between membrane cholesterol and the GABA(A) receptor. The separate effects on the non-steroidal potentiators of GABA of cholesterol-enrichment or addition of epicholesterol to the neurones are suggested to be due to changes in membrane fluidity. 6. In view of the likely physiological modulation of GABA(A) receptors by endogenous neuroactive steroids and evidence of the in vivo lability of membrane cholesterol, the present observations may have physiological as well as pharmacological relevance

    Exploring the Superior Colliculus In Vitro

    No full text
    The superior colliculus plays an important role in the translation of sensory signals that encode the location of objects in space into motor signals that encode vectors of the shifts in gaze direction called saccades. Since the late 1990s, our two laboratories have been applying whole cell patch-clamp techniques to in vitro slice preparations of rodent superior colliculus to analyze the structure and function of its circuitry at the cellular level. This review describes the results of these experiments and discusses their contributions to our understanding of the mechanisms responsible for sensorimotor integration in the superior colliculus. The experiments analyze vertical interactions between its superficial visuosensory and intermediate premotor layers and propose how they might contribute to express saccades and to saccadic suppression. They also compare and contrast the circuitry within each of these layers and propose how this circuitry might contribute to the selection of the targets for saccades and to the build-up of the premotor commands that precede saccades. Experiments also explore in vitro the roles of extrinsic inputs to the superior colliculus, including cholinergic inputs from the parabigeminal and parabrachial nuclei and GABAergic inputs from the substantia nigra pars reticulata, in modulating the activity of the collicular circuitry. The results extend and clarify our understanding of the multiple roles the superior colliculus plays in sensorimotor integration
    corecore