7,987 research outputs found

    Torsional Alfv\'en waves in solar partially ionized plasma: effects of neutral helium and stratification

    Full text link
    Ion-neutral collisions may lead to the damping of Alfven waves in chromospheric and prominence plasmas. Neutral helium atoms enhance the damping in certain temperature interval, where the ratio of neutral helium and neutral hydrogen atoms is increased. Therefore, the height-dependence of ionization degrees of hydrogen and helium may influence the damping rate of Alfven waves. We aim to study the effect of neutral helium in the damping of Alfven waves in stratified partially ionized plasma of the solar chromosphere. We consider a magnetic flux tube, which is expanded up to 1000 km height and then becomes vertical due to merging with neighboring tubes, and study the dynamics of linear torsional Alfven waves in the presence of neutral hydrogen and neutral helium atoms. We start with three-fluid description of plasma and consequently derive single-fluid magnetohydrodynamic (MHD) equations for torsional Alfven waves. Thin flux tube approximation allows to obtain the dispersion relation of the waves in the lower part of tubes, while the spatial dependence of steady-state Alfven waves is governed by Bessel type equation in the upper part of tubes. Consecutive derivation of single-fluid MHD equations results in a new Cowling diffusion coefficient in the presence of neutral helium which is different from previously used one. We found that shorter-period (< 5 s) torsional Alfven waves damp quickly in the chromospheric network due to ion-neutral collision. On the other hand, longer-period (> 5 s) waves do not reach the transition region as they become evanescent at lower heights in the network cores. Propagation of torsional Alfven waves through the chromosphere into the solar corona should be considered with caution: low-frequency waves are evanescent due to the stratification, while high-frequency waves are damped due to ion neutral collisions.Comment: 9 pages, 7 figures (accepted in A&A

    Free geometric adjustment of the SECOR Equatorial Network (Solution SECOR-27)

    Get PDF
    The basic purpose of this experiment is to compute reduced normal equations from the observational data of the SECOR Equatorial Network obtained from DMA/Topographic Center, D/Geodesy, Geosciences Div. Washington, D.C. These reduced normal equations are to be combined with reduced normal equations of other satellite networks of the National Geodetic Satellite Program to provide station coordinates from a single least square adjustment. An individual SECOR solution was also obtained and is presented in this report, using direction constraints computed from BC-4 optical data from stations collocated with SECOR stations. Due to the critical configuration present in the range observations, weighted height constraints were also applied in order to break the near coplanarity of the observing stations

    Accuracy control in ultra-large-scale electronic structure calculation

    Full text link
    Numerical aspects are investigated in ultra-large-scale electronic structure calculation. Accuracy control methods in process (molecular-dynamics) calculation are focused. Flexible control methods are proposed so as to control variational freedoms, automatically at each time step, within the framework of generalized Wannier state theory. The method is demonstrated in silicon cleavage simulation with 10^2-10^5 atoms. The idea is of general importance among process calculations and is also used in Krylov subspace theory, another large-scale-calculation theory.Comment: 8 pages, 3 figures. To appear in J.Phys. Condens. Matter. A preprint PDF file in better graphics is available at http://fujimac.t.u-tokyo.ac.jp/lses/index_e.htm

    Bifurcations in the Lozi map

    Get PDF
    We study the presence in the Lozi map of a type of abrupt order-to-order and order-to-chaos transitions which are mediated by an attractor made of a continuum of neutrally stable limit cycles, all with the same period.Comment: 17 pages, 12 figure

    Recovering hidden Bloch character: Unfolding Electrons, Phonons, and Slabs

    Full text link
    For a quantum state, or classical harmonic normal mode, of a system of spatial periodicity "R", Bloch character is encoded in a wavevector "K". One can ask whether this state has partial Bloch character "k" corresponding to a finer scale of periodicity "r". Answering this is called "unfolding." A theorem is proven that yields a mathematically clear prescription for unfolding, by examining translational properties of the state, requiring no "reference states" or basis functions with the finer periodicity (r,k). A question then arises, how should one assign partial Bloch character to a state of a finite system? A slab, finite in one direction, is used as the example. Perpendicular components k_z of the wavevector are not explicitly defined, but may be hidden in the state (and eigenvector |i>.) A prescription for extracting k_z is offered and tested. An idealized silicon (111) surface is used as the example. Slab-unfolding reveals surface-localized states and resonances which were not evident from dispersion curves alone.Comment: 11 pages, 7 figure

    Magnetohydrodynamic waves in solar partially ionized plasmas: two-fluid approach

    Full text link
    We derive the dynamics of magnetohydrodynamic waves in two-fluid partially ionized plasmas and to compare the results with those obtained under single-fluid description. Two-fluid magnetohydrodynamic equations are used, where ion-electron plasma and neutral particles are considered as separate fluids. Dispersion relations of linear magnetohydrodynamic waves are derived for simplest case of homogeneous medium. Frequencies and damping rates of waves are obtained for different parameters of background plasma. We found that two- and single-fluid descriptions give similar results for low frequency waves. However, the dynamics of MHD waves in two-fluid approach is significantly changed when the wave frequency becomes comparable or higher than ion-neutral collision frequency. Alfven and fast magneto-acoustic waves attain their maximum damping rate at particular frequencies (for example, the peak frequency equals 2.5 ion-neutral collision frequency for 50 % of neutral Hydrogen) in wave spectrum. The damping rates are reduced for higher frequency waves. The new mode of slow magneto-acoustic wave appears for higher frequency branch, which is connected to neutral hydrogen fluid. The single-fluid approach perfectly deals with slow processes in partially ionized plasmas, but fails for time-scales smaller than ion-neutral collision time. Therefore, two-fluid approximation should be used for the description of relatively fast processes. Some results of single-fluid description, for example the damping of high-frequency Alfven waves in the solar chromosphere due to ion-neutral collisions, should be revised in future.Comment: 8 pages, 7 figures, accepted in A&

    On differential transformations between Cartesian and curvilinear (geodetic) coordinates

    Get PDF
    Differential transformations are developed between Cartesian and curvilinear orthogonal coordinates. Only matrix algebra is used for the presentation of the basic concepts. After defining the reference systems used the rotation (R), metric (H), and Jacobian (J) matrices of the transformations between cartesian and curvilinear coordinate systems are introduced. A value of R as a function of H and J is presented. Likewise an analytical expression for J(-1) as a function of H(-2) and R is obtained. Emphasis is placed on showing that differential equations are equivalent to conventional similarity transformations. Scaling methods are discussed along with ellipsoidal coordinates. Differential transformations between elipsoidal and geodetic coordinates are established

    Global plate tectonics and the secular motion of the pole

    Get PDF
    Astronomical data compiled during the last 70 years by the international organizations providing the coordinates of the instantaneous pole clearly shows a persistent drift of the mean pole. The differential contributions to the earth's second-order tensor of inertia were obtained and applied, resulting in no significant displacement of the earth's principal axis. In view of the above, the effect that theoretical geophysical models for absolute plate velocities may have on an apparent displacement of the mean pole as a consequence of station drifting was analyzed. The investigation also reports new values for the crustal tensor of inertia (assuming an ellipsoidal earth) and the orientation of its axis of figure, reopening the old speculation of a possible sliding of the whole crustover the upper mantle, including the supporting geophysical and astronomic evidence
    • …
    corecore