7,987 research outputs found
Torsional Alfv\'en waves in solar partially ionized plasma: effects of neutral helium and stratification
Ion-neutral collisions may lead to the damping of Alfven waves in
chromospheric and prominence plasmas. Neutral helium atoms enhance the damping
in certain temperature interval, where the ratio of neutral helium and neutral
hydrogen atoms is increased. Therefore, the height-dependence of ionization
degrees of hydrogen and helium may influence the damping rate of Alfven waves.
We aim to study the effect of neutral helium in the damping of Alfven waves in
stratified partially ionized plasma of the solar chromosphere. We consider a
magnetic flux tube, which is expanded up to 1000 km height and then becomes
vertical due to merging with neighboring tubes, and study the dynamics of
linear torsional Alfven waves in the presence of neutral hydrogen and neutral
helium atoms. We start with three-fluid description of plasma and consequently
derive single-fluid magnetohydrodynamic (MHD) equations for torsional Alfven
waves. Thin flux tube approximation allows to obtain the dispersion relation of
the waves in the lower part of tubes, while the spatial dependence of
steady-state Alfven waves is governed by Bessel type equation in the upper part
of tubes. Consecutive derivation of single-fluid MHD equations results in a new
Cowling diffusion coefficient in the presence of neutral helium which is
different from previously used one. We found that shorter-period (< 5 s)
torsional Alfven waves damp quickly in the chromospheric network due to
ion-neutral collision. On the other hand, longer-period (> 5 s) waves do not
reach the transition region as they become evanescent at lower heights in the
network cores. Propagation of torsional Alfven waves through the chromosphere
into the solar corona should be considered with caution: low-frequency waves
are evanescent due to the stratification, while high-frequency waves are damped
due to ion neutral collisions.Comment: 9 pages, 7 figures (accepted in A&A
Free geometric adjustment of the SECOR Equatorial Network (Solution SECOR-27)
The basic purpose of this experiment is to compute reduced normal equations from the observational data of the SECOR Equatorial Network obtained from DMA/Topographic Center, D/Geodesy, Geosciences Div. Washington, D.C. These reduced normal equations are to be combined with reduced normal equations of other satellite networks of the National Geodetic Satellite Program to provide station coordinates from a single least square adjustment. An individual SECOR solution was also obtained and is presented in this report, using direction constraints computed from BC-4 optical data from stations collocated with SECOR stations. Due to the critical configuration present in the range observations, weighted height constraints were also applied in order to break the near coplanarity of the observing stations
Accuracy control in ultra-large-scale electronic structure calculation
Numerical aspects are investigated in ultra-large-scale electronic structure
calculation. Accuracy control methods in process (molecular-dynamics)
calculation are focused. Flexible control methods are proposed so as to control
variational freedoms, automatically at each time step, within the framework of
generalized Wannier state theory. The method is demonstrated in silicon
cleavage simulation with 10^2-10^5 atoms. The idea is of general importance
among process calculations and is also used in Krylov subspace theory, another
large-scale-calculation theory.Comment: 8 pages, 3 figures. To appear in J.Phys. Condens. Matter. A preprint
PDF file in better graphics is available at
http://fujimac.t.u-tokyo.ac.jp/lses/index_e.htm
Bifurcations in the Lozi map
We study the presence in the Lozi map of a type of abrupt order-to-order and
order-to-chaos transitions which are mediated by an attractor made of a
continuum of neutrally stable limit cycles, all with the same period.Comment: 17 pages, 12 figure
Recovering hidden Bloch character: Unfolding Electrons, Phonons, and Slabs
For a quantum state, or classical harmonic normal mode, of a system of
spatial periodicity "R", Bloch character is encoded in a wavevector "K". One
can ask whether this state has partial Bloch character "k" corresponding to a
finer scale of periodicity "r". Answering this is called "unfolding." A theorem
is proven that yields a mathematically clear prescription for unfolding, by
examining translational properties of the state, requiring no "reference
states" or basis functions with the finer periodicity (r,k). A question then
arises, how should one assign partial Bloch character to a state of a finite
system? A slab, finite in one direction, is used as the example. Perpendicular
components k_z of the wavevector are not explicitly defined, but may be hidden
in the state (and eigenvector |i>.) A prescription for extracting k_z is
offered and tested. An idealized silicon (111) surface is used as the example.
Slab-unfolding reveals surface-localized states and resonances which were not
evident from dispersion curves alone.Comment: 11 pages, 7 figure
Magnetohydrodynamic waves in solar partially ionized plasmas: two-fluid approach
We derive the dynamics of magnetohydrodynamic waves in two-fluid partially
ionized plasmas and to compare the results with those obtained under
single-fluid description. Two-fluid magnetohydrodynamic equations are used,
where ion-electron plasma and neutral particles are considered as separate
fluids. Dispersion relations of linear magnetohydrodynamic waves are derived
for simplest case of homogeneous medium. Frequencies and damping rates of waves
are obtained for different parameters of background plasma. We found that two-
and single-fluid descriptions give similar results for low frequency waves.
However, the dynamics of MHD waves in two-fluid approach is significantly
changed when the wave frequency becomes comparable or higher than ion-neutral
collision frequency. Alfven and fast magneto-acoustic waves attain their
maximum damping rate at particular frequencies (for example, the peak frequency
equals 2.5 ion-neutral collision frequency for 50 % of neutral Hydrogen) in
wave spectrum. The damping rates are reduced for higher frequency waves. The
new mode of slow magneto-acoustic wave appears for higher frequency branch,
which is connected to neutral hydrogen fluid. The single-fluid approach
perfectly deals with slow processes in partially ionized plasmas, but fails for
time-scales smaller than ion-neutral collision time. Therefore, two-fluid
approximation should be used for the description of relatively fast processes.
Some results of single-fluid description, for example the damping of
high-frequency Alfven waves in the solar chromosphere due to ion-neutral
collisions, should be revised in future.Comment: 8 pages, 7 figures, accepted in A&
On differential transformations between Cartesian and curvilinear (geodetic) coordinates
Differential transformations are developed between Cartesian and curvilinear orthogonal coordinates. Only matrix algebra is used for the presentation of the basic concepts. After defining the reference systems used the rotation (R), metric (H), and Jacobian (J) matrices of the transformations between cartesian and curvilinear coordinate systems are introduced. A value of R as a function of H and J is presented. Likewise an analytical expression for J(-1) as a function of H(-2) and R is obtained. Emphasis is placed on showing that differential equations are equivalent to conventional similarity transformations. Scaling methods are discussed along with ellipsoidal coordinates. Differential transformations between elipsoidal and geodetic coordinates are established
Global plate tectonics and the secular motion of the pole
Astronomical data compiled during the last 70 years by the international organizations providing the coordinates of the instantaneous pole clearly shows a persistent drift of the mean pole. The differential contributions to the earth's second-order tensor of inertia were obtained and applied, resulting in no significant displacement of the earth's principal axis. In view of the above, the effect that theoretical geophysical models for absolute plate velocities may have on an apparent displacement of the mean pole as a consequence of station drifting was analyzed. The investigation also reports new values for the crustal tensor of inertia (assuming an ellipsoidal earth) and the orientation of its axis of figure, reopening the old speculation of a possible sliding of the whole crustover the upper mantle, including the supporting geophysical and astronomic evidence
- …