3,844 research outputs found
Infants segment words from songs - an EEG study
Children’s songs are omnipresent and highly attractive stimuli in infants’ input. Previous work suggests that infants process linguistic–phonetic information from simplified sung melodies. The present study investigated whether infants learn words from ecologically valid children’s songs. Testing 40 Dutch-learning 10-month-olds in a familiarization-then-test electroencephalography (EEG) paradigm, this study asked whether infants can segment repeated target words embedded in songs during familiarization and subsequently recognize those words in continuous speech in the test phase. To replicate previous speech work and compare segmentation across modalities, infants participated in both song and speech sessions. Results showed a positive event-related potential (ERP) familiarity effect to the final compared to the first target occurrences during both song and speech familiarization. No evidence was found for word recognition in the test phase following either song or speech. Comparisons across the stimuli of the present and a comparable previous study suggested that acoustic prominence and speech rate may have contributed to the polarity of the ERP familiarity effect and its absence in the test phase. Overall, the present study provides evidence that 10-month-old infants can segment words embedded in songs, and it raises questions about the acoustic and other factors that enable or hinder infant word segmentation from songs and speech
Controlling the uncontrolled: Are there incidental experimenter effects on physiologic responding?
The degree to which experimenters shape participant behavior has long been of interest in experimental social science research. Here, we extend this question to the domain of peripheral psychophysiology, where experimenters often have direct, physical contact with participants, yet researchers do not consistently test for their influence. We describe analytic tools for examining experimenter effects in peripheral physiology. Using these tools, we investigate nine data sets totaling 1,341 participants and 160 experimenters across different roles (e.g., lead research assistants, evaluators, confederates) to demonstrate how researchers can test for experimenter effects in participant autonomic nervous system activity during baseline recordings and reactivity to study tasks. Our results showed (a) little to no significant variance in participants' physiological reactivity due to their experimenters, and (b) little to no evidence that three characteristics of experimenters that are well known to shape interpersonal interactions-status (using five studies with 682 total participants), gender (using two studies with 359 total participants), and race (in two studies with 554 total participants)-influenced participants' physiology. We highlight several reasons that experimenter effects in physiological data are still cause for concern, including the fact that experimenters in these studies were already restricted on a number of characteristics (e.g., age, education). We present recommendations for examining and reducing experimenter effects in physiological data and discuss implications for replication
The statistical mechanics of networks
We study the family of network models derived by requiring the expected
properties of a graph ensemble to match a given set of measurements of a
real-world network, while maximizing the entropy of the ensemble. Models of
this type play the same role in the study of networks as is played by the
Boltzmann distribution in classical statistical mechanics; they offer the best
prediction of network properties subject to the constraints imposed by a given
set of observations. We give exact solutions of models within this class that
incorporate arbitrary degree distributions and arbitrary but independent edge
probabilities. We also discuss some more complex examples with correlated edges
that can be solved approximately or exactly by adapting various familiar
methods, including mean-field theory, perturbation theory, and saddle-point
expansions.Comment: 15 pages, 4 figure
Solution of the 2-star model of a network
The p-star model or exponential random graph is among the oldest and
best-known of network models. Here we give an analytic solution for the
particular case of the 2-star model, which is one of the most fundamental of
exponential random graphs. We derive expressions for a number of quantities of
interest in the model and show that the degenerate region of the parameter
space observed in computer simulations is a spontaneously symmetry broken phase
separated from the normal phase of the model by a conventional continuous phase
transition.Comment: 5 pages, 3 figure
Sharing Social Network Data: Differentially Private Estimation of Exponential-Family Random Graph Models
Motivated by a real-life problem of sharing social network data that contain
sensitive personal information, we propose a novel approach to release and
analyze synthetic graphs in order to protect privacy of individual
relationships captured by the social network while maintaining the validity of
statistical results. A case study using a version of the Enron e-mail corpus
dataset demonstrates the application and usefulness of the proposed techniques
in solving the challenging problem of maintaining privacy \emph{and} supporting
open access to network data to ensure reproducibility of existing studies and
discovering new scientific insights that can be obtained by analyzing such
data. We use a simple yet effective randomized response mechanism to generate
synthetic networks under -edge differential privacy, and then use
likelihood based inference for missing data and Markov chain Monte Carlo
techniques to fit exponential-family random graph models to the generated
synthetic networks.Comment: Updated, 39 page
Interviewer effects on non-response propensity in longitudinal surveys:a multilevel modelling approach
The paper investigates two different multilevel approaches, the multilevel cross-classified and the multiple-membership models, for the analysis of interviewer effects on wave non-response in longitudinal surveys. The models proposed incorporate both interviewer and area effects to account for the non-hierarchical structure, the influence of potentially more than one interviewer across waves and possible confounding of area and interviewer effects arising from the non-random allocation of interviewers across areas. The methods are compared by using a data set: the UK Family and Children Survey
Critical phenomena in exponential random graphs
The exponential family of random graphs is one of the most promising class of
network models. Dependence between the random edges is defined through certain
finite subgraphs, analogous to the use of potential energy to provide
dependence between particle states in a grand canonical ensemble of statistical
physics. By adjusting the specific values of these subgraph densities, one can
analyze the influence of various local features on the global structure of the
network. Loosely put, a phase transition occurs when a singularity arises in
the limiting free energy density, as it is the generating function for the
limiting expectations of all thermodynamic observables. We derive the full
phase diagram for a large family of 3-parameter exponential random graph models
with attraction and show that they all consist of a first order surface phase
transition bordered by a second order critical curve.Comment: 14 pages, 8 figure
Topological network alignment uncovers biological function and phylogeny
Sequence comparison and alignment has had an enormous impact on our
understanding of evolution, biology, and disease. Comparison and alignment of
biological networks will likely have a similar impact. Existing network
alignments use information external to the networks, such as sequence, because
no good algorithm for purely topological alignment has yet been devised. In
this paper, we present a novel algorithm based solely on network topology, that
can be used to align any two networks. We apply it to biological networks to
produce by far the most complete topological alignments of biological networks
to date. We demonstrate that both species phylogeny and detailed biological
function of individual proteins can be extracted from our alignments.
Topology-based alignments have the potential to provide a completely new,
independent source of phylogenetic information. Our alignment of the
protein-protein interaction networks of two very different species--yeast and
human--indicate that even distant species share a surprising amount of network
topology with each other, suggesting broad similarities in internal cellular
wiring across all life on Earth.Comment: Algorithm explained in more details. Additional analysis adde
Multiple-membership multiple-classification models for social network and group dependences
The social network literature on network dependences has largely ignored other sources of dependence, such as the school that a student attends, or the area in which an individual lives. The multilevel modelling literature on school and area dependences has, in turn, largely ignored social networks. To bridge this divide, a multiple-membership multiple-classification modelling approach for jointly investigating social network and group dependences is presented. This allows social network and group dependences on individual responses to be investigated and compared. The approach is used to analyse a subsample of the Adolescent Health Study data set from the USA, where the response variable of interest is individual level educational attainment, and the three individual level covariates are sex, ethnic group and age. Individual, network, school and area dependences are accounted for in the analysis. The network dependences can be accounted for by including the network as a classification in the model, using various network configurations, such as ego-nets and cliques. The results suggest that ignoring the network affects the estimates of variation for the classifications that are included in the random part of the model (school, area and individual), as well as having some influence on the point estimates and standard errors of the estimates of regression coefficients for covariates in the fixed part of the model. From a substantive perspective, this approach provides a flexible and practical way of investigating variation in an individual level response due to social network dependences, and estimating the share of variation of an individual response for network, school and area classifications
Employee Stock Ownership and Financial Performance in European Countries: The Moderating Effects of Uncertainty Avoidance and Social Trust
This study investigates how the effect of employee stock ownership on financial performance may hinge on the diverse cultural and societal contexts of European countries. Based on agency and national culture theories, we hypothesize that the positive relationship between employee stock ownership and return on assets (ROA) is stronger in those nations with lower uncertainty avoidance and higher social trust. Using a multisource, time‐lagged, large‐scale dataset of 1,741 firms from 21 countries in Europe, our multilevel, random coefficient modeling analysis found evidence for these hypotheses, suggesting that uncertainty avoidance and social trust serve as important contextual cues in predicting the linkage between employee stock ownership and financial performance. Our supplemental analysis with distinction between the managerial and nonmanagerial employee stock ownership further indicates managerial employee stock ownership has a direct positive effect on ROA. Although nonmanagerial employee stock ownership had a nonsignificant association with ROA, the relationship was positive and significant when uncertainty avoidance was low and social trust was high. This research contributes to the existing literature by illuminating some of the contextual influences altering the effectiveness of employee stock ownership. Our findings also offer practical suggestions for effectively using employee stock ownership
- …
