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Summary. The social network literature on network dependences has largely ignored other
sources of dependence, such as the school that a student attends, or the area in which an
individual lives. The multilevel modelling literature on school and area dependences has, in
turn, largely ignored social networks. To bridge this divide, a multiple-membership multiple-
classification modelling approach for jointly investigating social network and group dependences
is presented. This allows social network and group dependences on individual responses to be
investigated and compared. The approach is used to analyse a subsample of the Adolescent
Health Study data set from the USA, where the response variable of interest is individual level
educational attainment, and the three individual level covariates are sex, ethnic group and age.
Individual, network, school and area dependences are accounted for in the analysis.The network
dependences can be accounted for by including the network as a classification in the model,
using various network configurations, such as ego-nets and cliques. The results suggest that
ignoring the network affects the estimates of variation for the classifications that are included in
the random part of the model (school, area and individual), as well as having some influence on
the point estimates and standard errors of the estimates of regression coefficients for covariates
in the fixed part of the model. From a substantive perspective, this approach provides a flexible
and practical way of investigating variation in an individual level response due to social network
dependences, and estimating the share of variation of an individual response for network, school
and area classifications.

Keywords: Auto-correlation; Linear regression; Multilevel models; Social networks

1. Introduction

Many social populations have a multilevel structure, such as individuals in households and
areas, students in schools, workers in organizations or observations made on individuals at
different time points. Multilevel models have been developed to analyse data collected from
these populations (see, for example Snijders and Bosker (2012) and Goldstein (2003)), and to
allow relationships between variables to be investigated at a particular level or classification,
often the individual level, while taking into account effects operating at other classifications of
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the population structure, e.g. schools or areas. In some situations, the aim of the analysis is to
assess whether an individual level relationship differs from one group to another. For example,
is the relationship between prior and current examination performance stronger in some schools
than others? Multilevel modelling can also be used as a model-based approach for analysing
data that have been collected from a multistage sample, when the target of inference is the
individual level relationship between a set of variables. In this approach the primary sampling
unit is included as a level, and the population structure may be regarded as a nuisance to be taken
into account in the analysis of an individual level relationship, so that regression coefficients are
estimated efficiently, and appropriate standard error estimates are calculated. However, more
often in multilevel analysis the population structure is of direct substantive interest, and the aim
of the analysis may be twofold: to estimate an individual level relationship given the complex
population structure, and to measure the nature and extent of variations in variables of interest
at the various levels of this population structure.

Numerous studies have been carried out to investigate household level, school level or area
level variations in individual level responses for social, educational and health outcome variables
by using multilevel models. However, social networks have been largely ignored in the multilevel
modelling literature as an additional source of dependence. Network auto-correlation models
have been developed for social network dependences in the social network literature, adapted
from models that were originally developed for spatial dependences (Cliff and Ord, 1975; Ord,
1975). For network auto-correlation models it is typically assumed that the response variable is
continuous, though there have been some very recent developments to this model for a dichoto-
mous response (Koskinen and Stenberg, 2012). Although network auto-correlation models take
the social network dependences into account, they essentially ignore other levels of the popu-
lation structure unless these are added to the model as fixed effects, which can be problematic
when there are many groups. Moreover, network auto-correlation models do not allow an easy
assessment of the relative share of variation in an individual response at the individual, network
and group levels.

This paper illustrates some new approaches for assessing social network dependences in an
individual responsevariable—academicperformance—while includingothergroupdependences
such as the school or area to which an individual belongs, by applying multiple-membership
multiple-classification (MMMC) models (Hill and Goldstein, 1998; Browne et al., 2001) to the
Adolescent Health Study data set (Harris et al., 2009). The main aim of the analysis is twofold:
to estimate an overall individual level relationship between a set of variables, and to measure
the nature and extent of variations in individual level responses at various levels of the popula-
tion structure. There are two other aims of the analysis: an assessment of the consequences, in
terms of model parameter estimation and subsequent statistical inference, of ignoring different
features of the population structure in the analysis, and a comparison of multiple-membership
(MM) models with existing models for network auto-correlation.

An empirical study has been carried out using a subsample of the Adolescent Health Study
data for one state in the USA, focusing on an individual level response variable: academic perfor-
mance, which is related to three individual level covariates: gender, ethnic group and age. Friend-
ship networks are available for the individuals in the Adolescent Health Study data. The levels
of the population structure that are studied alongside the social network are area (defined by
US county) and school, as well as the individual level. The data have been analysed before when
investigating network effects in education, from a different perspective from that of the present
study. For example, Calvó-armengol et al. (2008) used the data to study peer effects and social
networks in education. They were particularly interested in an individual’s position in their peer
(friendship) network and used a peer effects model, based on a variation of the Anselin (1988)
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spatial error model, in their investigation. They found that, after controlling for observable in-
dividual characteristics and unobservable network-specific factors, the individuals’ position in
a network, based on a centrality measure, is a key determinant of their academic performance.

In the MMMC approach for social networks, individuals are members of ego-nets and cliques.
Cliques are subnetworks of a particular size where every individual is directly connected to one
another. For example, in a clique of size 3, all three individuals are connected. A clique of size 2
is more often referred to as a dyad, in which the pair of individuals are connected. An ‘ego-net’
consists of a particular individual in the network and all the other individuals in the network
to which they are directly connected. Each individual may belong to more than one of these
groups, or in some cases not be a member of any groups—e.g. population network isolates,
or members of the sampled network with very few connections to other sampled individuals.
Members of the network with few connections are more likely to occur in sampled networks,
because the friends whom sampled individuals nominate may be out of sample. Other group
dependences, such as those at the school or area level, are added as additional crossed levels in
the MMMC model, which is an extension of the multilevel model.

Where possible in this paper, the results of the MMMC approaches are compared with existing
approaches for taking into account social network dependences: in particular, network auto-
correlation models. In addition, comparisons are made with a single-level regression model,
which ignores all higher level features of the population structure. It is of interest to assess
whether such a naive statistical modelling approach would lead to different substantive con-
clusions when compared with those models that account for population structure, as well as
assessing the consequences for statistical estimation of ignoring levels of the population struc-
ture above the individual.

The remainder of the paper is organized as follows. In Section 2, a description of the data
structure and preparation is given, together with some descriptive results. In Section 3 a discus-
sion of the modelling approaches is given, including a brief review of network auto-correlation
models, and a definition of the MMMC models for social network and group dependences. In
Section 4, the results of analysing various models are given. Finally, a discussion is given and
conclusions are drawn in Section 5.

2. Data description and preparation

The data are from a restricted access Adolescent Health Study data set for wave I (Harris et al.,
2009) and were analysed in a secure data environment. The Adolescent Health Study is a longi-
tudinal sample of school students in grades 7–12 (typically aged 11–16 years) in the USA, which
began around 1995. Information that was collected includes a range of health outcome variables,
academic performance and individual (i.e. student level) characteristics, as well as school and
geographical details, and friendship networks. A subset of the data was used for ‘State 7’, which
is a state of the USA which comprises 968 valid sampled cases for individuals in 10 schools, and
in 13 areas at the county scale. The dependent variable is a measure of academic performance,
which was generated by converting the grades from four subjects (graded A–D) into four five-
point scales (1, D or less, 2, C, 3, B, and 4, A) and then summing them. These scores were then
standardized to have mean 0 and standard deviation 1 and are called ‘ztotscore’ in the tables.

The friendship networks are potentially available for all students in the sample. Each indi-
vidual is asked to name up to five male and five female friends. These friends may also be in
the sample, or friends can be named who are out of sample. The networks are available in the
Adolescent Health Study data as adjacency (node) lists; for each individual, the adjacency list is
simply a list of names of their friends (in anonymized form). Directed binary adjacency matrices
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were extracted from these lists by using R (R Core Team, 2012), via a routine for converting
adjacency lists to adjacency matrices. For a sample of size n, the binary adjacency matrix D has
dimensions n×n. An element dij in the matrix D takes the value 1 if i nominates j as a friend and
0 otherwise. Individual j may reciprocate by nominating i as a friend, or may not, so the directed
adjacency matrix is not usually symmetric. Diagonal elements dii, which would indicate self-
friendship nominations, are assumed to be 0. These adjacency matrices were restricted to other
individuals in the sample, and also in State 7, resulting in sample network isolates. This does not
present problems in the modelling approaches that are discussed later, but it is worth noting that
the structure of a sampled network is different from a population network; a sample network is
likely to be considerably more sparse and less structured than the corresponding population net-
work. As well as obtaining the directed adjacency matrix D, a symmetrized (undirected) version
of this matrix, Ds, was obtained and was used in the clique set analyses below. For a symmetrized
matrix Ds, if i nominates j as a friend, if j nominates i as a friend, or if both nominate each other
as friends, the element dij is given a value of 1. Thus, the symmetrized matrix is, by definition,
symmetric, and it tends to have much higher ‘density’ (i.e. will have more of the possible network
connections present) than the directed adjacency matrix D from which Ds was derived.

Where the network level was considered, the MMMC models that are applied in Section 4 in-
volved clique memberships for undirected cliques of minimum size 2 (clique-2) and of minimum
size 3 (clique-3), as well as ego-net membership; an ego-net is an individual’s direct network of
friends, where the individual is defined as the ego and their friends are defined as their alters.
When clique-2 and clique-3 definitions are used together in the models, the clique-2 level rep-
resents dyads only (a dyad is a pair of directly connected individuals), and the clique-3 level
represents cliques of size at least 3 (for a clique of size 3, all three members of the clique are
directly connected to one another). In theory, cliques of minimum size 4, or other network
configurations, could be specified in this approach, but there are too few of these to include in
the models for these sample data. The clique sets for a minimum clique size of 2 (clique-2) and
minimum size of 3 (clique-3) were obtained by using UCINET 6 (Borgatti et al., 2002). The
program implements the Bron and Kerbosch (1973) algorithm to find all Luce and Perry (1949)
cliques of a specified minimum size. The ego-nets for each individual were extracted from the
adjacency matrix; the ego-net for each individual is the corresponding row of the adjacency
matrix. Once the ego-nets and clique sets had been obtained, weight matrices were produced for
each individual. These weights work as follows. If an individual is a member of four clique-3s,
their weights for each of these clique-3s will be 1

4 . Where ego-nets are used in the models a
similar approach is used: if an individual (ego) had three friends in the sample (alters), each of
these alters would each be given a weight of 1

3 in the weight matrix.

2.1. Descriptive statistics
2.1.1. Attributes
Three covariates (attributes) were included in the models: ethnicity, which is coded as a binary
indicator about whether the student is black American or not, gender and age. The first two
covariates are categorical, and the third is continuous and is centred in the modelling results
that appear in Section 4. The total sample size is 968, comprising 510 (52%) females and
161 (17%) black Americans. The average age in the sample is 14.76 with a minimum of 10
and a maximum of 19.

2.1.2. Social networks
Each row of the directed network adjacency matrix represents the ego-net of an individual, in
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terms of whom they nominate as friends. Thus, if individual i, represented by row i of the matrix
D, nominates four friends, then the four off-diagonal elements in row i of D that represent these
friends will take the value 1 and the remaining n − 4 elements will take the value 0. For an
isolate in the sample data, the entire row for that individual will have elements of value 0. The
ego-net size ranges from zero (in the sample) (317 people, 39%) to nine people in the sample
(one person, 0.1%). Among those with a non-zero ego-net the mean ego-net size is 1.80 with a
standard deviation of 1.22. The clique analyses are based on the undirected adjacency matrix.
34% (333 students) do not belong to any clique-2s. The mean number of clique-2s that students
belong to, overall, is 1.39. For those students who belong to at least one clique, the mean number
of clique-2s that they belong to is 2.11. One student is a member of 12 clique-2s, which is the
maximum of this distribution. Fewer students are members of clique-3s; 805 students (83%) do
not belong to any clique-3s. The mean number of cliques that each student belongs to is 0.32.
For those students who belong to at least one clique, the mean number of clique-2s that they
belong to is 1.91. The maximum number of clique-3s that any student belongs to is 11, for one
student in the data set.

2.1.3. Groups
The groups that are considered in this study are schools and areas. There is a strong relationship
between schools and areas: for six of the schools all the students are from one area in each
school; for each of the four other schools, the majority of students are from one area, with just
one or two students from other areas. The distribution of people in areas, where the areas here
are counties, is uneven. Some areas have a large sample size, whereas some other areas contain
only one observation. There are six areas with sample sizes greater than 50. The sample is much
more evenly distributed in the 10 schools that are included in State 7, because the sample design
is a school-based study.

There are also two other finer scales of geography in the Adolescent Health Study data set:
‘neighbourhood 1’ and ‘neighbourhood 2’, where the latter definition is the finest geographical
scale, though both these neighbourhood definitions often include only one sample unit per
area. Although substantively these geographical scales may be interesting to study, there were
insufficient data to consider these areas further as classifications in the models, as it would be
very difficult to disentangle individual and area level effects at these scales.

3. Models

3.1. Multiple-membership multiple-classification models
Social network and group dependences can be taken into account through a random-effects
modelling approach via an extension to the multilevel model, known as the MMMC model,
which is itself an extension of the MM model to include other group dependences. Before defining
the full MMMC model for social network and group dependences, we first adapt the notation
of Browne et al. (2001), equation (5), for the MM model with social network dependences only.

The MM model for social network dependences may be defined by one network subgroup
(e.g. membership of ego-nets) as

yi =x′
iβ +

∑
j∈group1.i/

w1i,ju
.1/
j + ei,

i=1, . . . , n, group1.i/⊂ .1, . . . , J1/,

u
.1/
j ∼N.0, σ2

u.1/ /, ei ∼N.0, σ2
e /:

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.1/
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In model (1), yi is an individual level response. In this model formulation this response is assumed
to be continuous, xi is a vector of fixed covariates and β is the vector of their regression coeffi-
cients. Here, group1(i) is the set of ego-nets to which i is a member. The term Σj∈group1.i/w1i,ju

.1/
j

involves a set of J1 random effects u
.1/
j , where J1 is the total number of ego-nets. The weight

that is given to each individual for their ego-net membership is w1i,j. These weights sum to 1
for each individual. The random effects at the individual and network levels are assumed to be
uncorrelated. In these models, the ego-net of each individual is represented only by their friends,
so ego is not included in their own ego-net, although alternative weighting schemes could be
used. Strictly speaking, model (1) is an MM model, rather than an MMMC model, because in
this model there is only one classification.

The MMMC model for social network dependences may be defined by two network subgroups
(e.g. membership of cliques of minimum size 2, and membership cliques of minimum size 3) as

yi =x′
iβ +

∑
j∈group2.i/

w2i,ju
.2/
j +

∑
j∈group1.i/

w1i,ju
.1/
j + ei,

i=1, . . . , n, group1.i/⊂ .1, . . . , J1/, group2.i/⊂ .1, . . . , J2/,

u
.2/
j ∼N.0, σ2

u.2/ /, u
.1/
j ∼N.0, σ2

u.1/ /, ei ∼N.0, σ2
e /:

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.2/

The term Σj∈group2.i/w2i,ju
.2/
j involves a set of J2 random effects u

.2/
j , where J2 is the total number

of network subgroups for the second network definition included in the model. The weight that
is given to each individual for their membership of this second set of network subgroups is w2i,j,
and these weights sum to 1 for each individual. Model (2) is an MMMC model, because now
two classifications are included in the specification.

It is possible to put both clique-2s and clique-3s in the model as two sets of classifications.
Although some clique-2s are nested within clique-3s, this is similar to the more familiar case of
a three-level multilevel model, with pupils in classes in schools, where clearly the schools (which
are analogous to clique-3s) contain the classes (analogous to clique-2s). For both the pupils in
classes in schools case and the individuals in clique-2s in clique-3s case, the estimated variation
is divided between the individual level and the two classifications.

Finally, models (1) and (2) may be further extended to allow for both social network and group
dependences. Since group dependences have now been added to the models in the form of area
and school classifications, these are MMMC models: both for the case where ego-nets are used
for the social network definition, as well as for the case where the clique definitions are used. For
example, in model (3) the model for social network dependences with two network subgroups,
model (2), is extended to include two additional classifications: a geographical classification, as
defined by county, with random effects u

.3/
area.i/ and a school classification, with random effects

u
.4/
school.i/. The area and the school are not assumed to be nested in this model formulation,

although there is a strong correspondence of schools to areas in this data set:

yi =x′
iβ +u

.4/
school.i/ +u

.3/
area.i/ +

∑
j∈group2.i/

w2i,ju
.2/
j +

∑
j∈group1.i/

w1i,ju
.1/
j + ei,

i=1, . . . , n, group1.i/⊂ .i, . . . , J1/, group2.i/⊂ .i, . . . , J2/,

u
.4/
school.i/ ∼N.0, σ2

u.4/ /, u
.3/
area.i/ ∼N.0, σ2

u.3/ /,

u
.2/
j ∼N.0, σ2

u.2/ /, u
.1/
j ∼N.0, σ2

u.1/ /, ei ∼N.0, σ2
e /:

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.3/

Here school(i) is the school to which student i belongs, and area(i) is the area in which student i

lives. In some of the analyses of the consequences of ignoring a classification later in the paper,
model (3) was also fitted without the network components included. Also, because there is
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a close correspondence of particular schools to particular areas, a slightly reduced version of
model (3) was also fitted with just the school classification included, or just the area classification
included. The results are summarized in Tables 1, 2 and 3 in Section 4.

An alternative way of accounting for the group dependences is to extend model (1) or (2) to
include fixed indicator variables for the groups, and this may be appropriate where the number
of groups is small and all groups are included in the sample. An example of this approach, where
there are fixed indicator variables for schools, rather than adding school as a classification (and
where areas are not included in the model), can be found in Table 4 in Section 4. Technically,
this modelling approach is an MM, rather than an MMMC, model, because the schools are
included in the fixed part of this model via dummy variables, rather than in the random part of
the model as a classification; hence this model is referred to as an MM model in the discussion
of the results in Table 4.

Models (1), (2) and (3) can all be estimated in the software MLwiN (Rasbash et al., 2009).
The model parameters are estimated via Markov chain Monte Carlo sampling (Browne, 2009).
Before fitting the models, data preparation to identify the groups in the networks, such as ego-
nets, or cliques, and the corresponding membership weights, as discussed above in Section 2,
must be undertaken. Model (3) was fitted to the Adolescent Health Study data in the form as
specified above with area, school, network and individual levels all defined, and such a model was
run as a null model (no covariates) and as a model with fixed covariates included. In this model,
the two levels of network dependences were clique-2s and clique-3s, based on the undirected
adjacency matrix. A slightly reduced form of model (3) was also fitted, with just one level of
network dependences: the ego-nets of each individual, as derived from the directed adjacency
matrix. The results are discussed in the next section.

Fitting these models allows the two main aims of the analysis to be achieved: firstly, to esti-
mate the individual level relationship between the individual level outcome variable, academic
performance, and the three individual level covariates gender, ethnic group and age, having
taken the clustering of academic performance in networks, schools and areas into account, and,
secondly, to investigate the extent of variation in academic performance at the individual, net-
work, school and area levels, both before and after the inclusion of individual level covariates.
In addition, reduced versions of this model were also fitted, including a single-level regression
model, i.e. a model that ignores school, area and network dependences, as well as models that
ignore some of the levels above the individual. This achieves one of the other aims of this paper;
to investigate the consequences of ignoring particular features of the population structure in
statistical analysis. The results are given in Section 4.

3.2. Network auto-correlation models
Other models exist for social network dependences, and these have been applied in the social
networks literature; in particular, network auto-correlation models. See Leenders (2002) for a
review. One such network auto-correlation model is the network effects model, which is also
known in the geographical literature as the spatial effects model (Doreian, 1980), and defined
as

Y =ρA1Y +Xβ + ",

"∼N.0, σ2
" In/

.4/

where Y is an n × 1 vector of response variables and A1 is an n × n matrix of weights to
reflect the connections for the n individuals. The definition of A1 will affect the estimated
model parameters (Leenders, 2002). One such definition, as used here, is to derive A1 from the
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row-standardized directed adjacency matrix, so that this is the same weight information as used
in the MM models based on ego-nets (see the definition above). The auto-correlation parameter
ρ measures the strength of association between an individual’s response and the responses to
which the individual is connected. The same value of ρ is assumed for all of these connections. X
is an n×p matrix of fixed covariates, with associated regression coefficients β, and " is a vector
of error terms. If there are no connections between individuals, or if ρ is 0, model (4) reduces to
an ordinary least squares regression equation.

A variation of this model the network disturbances model, which is also known in the geo-
graphical literature as the spatial disturbances model (Doreian, 1980), is defined as

Y =Xβ + ",

"=ρA2"+ ξ,

ξ ∼N.0, σ2
ξ In/:

⎫⎪⎬
⎪⎭ .5/

In model (5) the parameters in common with model (4) are defined identically. The matrix A2
is an n×n weight matrix to reflect the connections for the n individuals, which could be identical
to A1. Again, if there are no connections between individuals, or if ρ is 0, model (5) reduces to
an ordinary least squares regression equation. Finally, it is possible to formulate a combined
model based on models (4) and (5), so that network auto-correlation is jointly modelled through
the response and error terms, and where the matrices A1 and A2 may be the same, or different.
Models (4) and (5), and the combined model, may be estimated by using the sna and spdep
packages in R (see, respectively, Butts (2008) and Bivand (2013)). In the literature, the models
tend to perform similarly in terms of statistical measures (Doreian, 1980; Leenders, 2002). The
decision to fit the network effects model, network disturbances model or some combination of
the two should therefore be made on substantive grounds.

3.3. Different modelling approaches
As well as the social network dependences, other group dependences may also be present. For
example, in the Adolescent Health Study data, there are geographical groups at various scales
(neighbourhoods, and counties), as well as schools. In the fixed effects approaches of models
(4) and (5), it is possible also to add the groups as fixed effects via a set of indicator (dummy)
variables. This approach is often appropriate when there only a few groups. Some of these
models were estimated below with schools as groups. This enabled a comparison of the network
disturbance model and MM models to be made for an example that included network and group
dependences (see Section 4 for a discussion). When modelling the cliques in the MM models,
it would be possible to include just one term, e.g. just for clique-3s without clique 2s, and this
may be appropriate if this corresponded to a particular substantive theory about cliques of size
3 or more with respect to the individual level responses.

The decision to fit network auto-correlation models or MMMC models when other groups
are present is likely to depend on two considerations: one substantive; one practical. Firstly,
from a substantive perspective, if interest focuses on estimating the nature and extent of variation
in individual responses at the network classifications compared with other group classifications,
then the MMMC model may be preferable because variance components are explicitly included
as model parameters and it is possible to model other group classifications alongside the net-
works as random effects and to compare the extent of variation for these different classifications.
However, if the substantive focus of the analysis is on estimating the individual level relation-
ship and the networks are regarded as a nuisance, then the network auto-correlation model may
be preferable. Moreover, the feedback correlations ρ that are obtained from these models may
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have a substantive interpretation in some contexts. Secondly, from a practical perspective, if the
number of groups such as schools or areas is large, and/or if the sample is unevenly distributed
within the groups, the MMMC modelling approach may be more statistically efficient. Also it
is relatively straightforward to define and fit the MMMC model for a binary response, whereas
it is not yet straightforward to fit the network auto-correlation model for a binary response,
although such models have recently been fitted by Koskinen and Stenberg (2012). In the next
section, the MMMC and network auto-correlation models are compared, using the Adolescent
Health Study data for the academic performance response variable, which is continuous.

4. Results

MMMC models for network and group dependences were fitted, with standardized academic
score ztotscore as the dependent variable. In Tables 1 and 2 the network was defined through
the clique-2 and clique-3 membership, on the basis of the undirected adjacency matrices. All
MMMC models presented in this paper were estimated via a Markov chain Monte Carlo algo-
rithm by using default flat priors for the fixed effects and a chain of 20000 samples, implemented
in MLwiN. In all models, standard diffuse (gamma) priors were assumed for the variance
parameters.

Table 1 shows null models with only a constant term in the fixed part, and Table 2 adds the
three individual level fixed covariates. Because both clique membership terms are included in
the models, clique-2 represents dyad membership only, and clique-3 represents individuals who
are members of cliques of minimum size 3.

Network, school and area levels were included in the complete models (the penultimate
columns of Tables 1 and 2) to meet the two main aims of this study:

(a) to estimate the individual level relationship between academic performance and the
individual level covariates, having taken into account the population structure above the
individual level, and

Table 1. Null MMMC models†

Parameter ztotscore for the following levels:

School Area Network School School Area School Individual
only only only + area + network + network + area only

+ network

Constant 0.04 0.03 −0.02 0.03 0.02 0.02 0.03 0.00
(0.10) (0.10) (0.03) (0.12) (0.09) (0.11) (0.10) (0.03)

School variance 0.075 0.059 0.073 0.052
Area variance 0.070 0.036 0.070 0.036
Network variance

Clique-3 0.188 0.148 0.218 0.153
Clique-2 0.139 0.139 0.040 0.139

Individual 0.958 0.973 0.924 0.958 0.884 0.930 0.885 1.00
variance

DIC 2714 2727 2736 2715 2700 2716 2701 2750

†Dependent variable, academic performance (ztotscore). Social networks are defined by undirected clique-2 and
clique-3 membership.
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Table 2. Main effects MMMC models with individual covariates†

Parameter ztotscore for the following levels:

School Area Network School School Area School Individual
only only only + area + network + network + area only

+ network

Constant −0.09 −0.07 −0.09 −0.08 −0.10 −0.09 −0.09 −0.08
(0.07) (0.09) (0.05) (0.09) (0.07) (0.09) (0.08) (0.05)

Black −0.03 −0.04 −0.07 −0.03 −0.03 −0.04 −0.03 −0.06
(0.09) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09) (0.08)

Female 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
(0.06) (0.06) (0.06) (0.06) (0.06) (0.06) (0.06) (0.06)

Age −0.13 −0.12 −0.13 −0.12 −0.12 −0.12 −0.12 −0.13
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

School variance 0.023 0.010 0.027 0.012
Area variance 0.034 0.029 0.036 0.026
Network variance

Clique-3 0.106 0.110 0.106 0.102
Clique-2 0.016 0.103 0.099 0.108

Individual 0.930 0.927 0.922 0.927 0.875 0.875 0.871 0.941
variance

DIC 2687 2682 2689 2683 2678 2674 2674 2692

†Dependent variable, academic performance (ztotscore). Social networks are defined by undirected clique-2 and
clique-3 membership.

(b) to investigate the nature and extent of variations in individual level responses at the
individual and group levels.

In Table 1 for the null models, the best fitting models according to the deviance information
criterion DIC involved the network and the school classification above the individual level
(DIC = 2700). For the model that included schools, areas and networks there was little differ-
ence in the goodness of fit (DIC = 2701) when compared with the model that includes only
networks and school classifications, probably reflecting the overlap of schools and areas in this
example. The areas may not perform quite as well as a level when schools are not included
because of the uneven sample distribution in areas (DIC = 2716). The final column of Table
1 shows the results for the null model with a DIC of 2750, suggesting a much worse model fit
when no population structure above the individual level is accounted for. These goodness-of-
fit results suggest that the population structure above the individual level, including the social
networks, should not be ignored in statistical analysis when studying variations in academic
performance.

The penultimate column of Table 1 shows the results for the model that includes networks,
schools and areas. It can be seen that most of the variation is between individuals but considerable
variation is also associated with networks for both clique definitions, suggesting clustering of
academic performance within dyads (clique-2s) and also within more structured parts of the
network (clique-3s). There is more variation between schools than between areas (variance
components 0.052 and 0.036 respectively), although as discussed earlier there is considerable
overlap of schools and areas in this sample. In the two models that fit only either the school
or the area as the group and also include network variance components, the network variance
components still appear to be important.
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A key feature of the multilevel modelling approach is to assess the relative share of variation
at the different levels specified in the models—schools, areas, networks and individuals. Consid-
ering the MMMC modelling extension given by equation (3), each student can belong to only
one area and to one school (equivalent to a weight of 1 for the school and the area that they
belong to) but can be a multiple member of network subgroups such as ego-nets or cliques with
differential weights per individual. The network level random effects in the MMMC model,
model (1), have weights w1i,j for each individual, and for model (2) also involve a second set of
weights w2i,j for each individual. Therefore, when considering the contribution to the overall
variance, the contribution of the network level for each individual is

∑
j∈group.i/

w2
1i,jσ

2
u.1/

for model (1) (and similar contributions in model (2)). These weights will potentially be different
for each individual and will be 0 for an individual who is not a member of any particular network
subgroups to which the weights correspond. In the models we generally assume equal weights
for each group and that these weights sum to 1 so that the above formula can be simplified to

∑
j∈group.i/

(
1
ni

)2

σ2
u.1/ =ni

(
1
ni

)2

σ2
u.1/ = σ2

u.1/

ni
:

In other words the importance of the network effects is inversely proportional to the number
of network subgroups that the individual belongs to, ni, which makes sense; as one belongs to
more networks the effect of any particular network will reduce. Therefore the network variance
components cannot be directly compared with the components at the other levels; it is evident
from the tables for the null models that if the area, school, individual and network variance
components are added together these result in a total variance that is much greater than 1,
which does not correspond to the variance of a standardized variable (which should have a
value of 1). One possibility is to consider the effect of the various classifications for an average
individual, by averaging the variance for each individual across the data set to obtain an average
variance component for the network effects:

∑
i

σ2
u.1/=ni

n
,

where ni is the number of networks for individual i, and n is the total number of individuals. Using
this approach and for the Adolescent Health Study data, the average weights were calculated as
follows: mean ego-net weight, 0.453; mean clique-2 weight, 0.420; mean clique-3 weight, 0.119.
If the variance components for the respective network subgroups are multiplied through by
these values, the total variance now sums to approximately 1 for the null models, as expected,
and a more meaningful comparison can be made regarding the relative share of variation at
the individual, area, school and network levels. This approach makes the MMMC modelling
approach useful for obtaining a descriptive measure of the variation in the response at each of
the levels that are included in the model. For example for the ‘School+network’ model in Table
1, approximately 7.3% of variation in academic performance is at the school level, approximately
1.7% at the clique-3 level, approximately 5.8% at the clique-2 level and approximately 88.4%
of variation is at the individual level. These percentages do not add to exactly 100% possibly
because of cluster imbalance and the prior distributions that were used in the Markov chain



450 M. Tranmer, D. Steel and W. J. Browne

Monte Carlo estimation, but they give a good indication of the sources of variation in academic
performance at the school, network and individual levels.

The weights that are used throughout the paper for the modelling of the network classifica-
tions, for both ego-nets and cliques, are inversely proportional to the total number of friends,
or cliques, to which each individual belongs, and the weights are equal for each friend. Such
a weighting scheme seems intuitively sensible and has parallels with other models such as the
network disturbances model but also has substantive implications. In particular, people with
more friends in the sample have smaller weights for each friend than those people with fewer
friends. Although not the main aim of the paper, it is of interest to investigate, empirically, the
effects of changing these weighting schemes.

A sensitivity analysis was carried out with different weights by using three schemes: firstly,
the scheme that was used for all the models throughout the paper, where weights are inversely
proportional to the number of friends; secondly, weights of 1 for any friend, so that the weights
will add up to n rather than to 1 for each individual with at least one friend; finally, weights
of 1=

√
n, which are inversely proportional to a function of n but will not add up to 1 for every

individual. The weights for people with more friends will be reduced less for this third scheme.
These three weighting schemes were compared for null models with individual, network and
school classifications, where networks were defined both by clique-2s and clique-3s, and by
ego-nets (the results are not shown). The estimates for the school variance component changed
very little, whichever weighting scheme was used, but the individual level (residual) variance
is slightly affected by the choice of weights in the network component. This is to be expected
as the amount of residual variation explained by the network will depend on the weighting
scheme.

In Table 1 features of the population structure were removed from the models to assess the
consequences of ignoring one or more levels of population structure in this example. If just
schools or just areas are modelled above the individual, the individual variance component
increases compared with the cases where the network level is also included, but the school or
area level components do not change much. This is in contrast with the findings of Tranmer
and Steel (2001) who found that ignoring a geographical level between the individual level and
a more aggregated area level affected both estimates in an example based on UK census data.
This reflects the fact that the levels were hierarchical in the case of census data for areas. In the
case of the Adolescent Health Study data, the population has a cross-classified structure.

Looking now at the model that adds the three individual level covariates in Table 2, the pattern
is fairly similar to that described for Table 1 in terms of model goodness of fit. The penultimate
column of Table 2 gives the model results with all three levels above the individual (school, area
and network) included. For the individual level relationship between academic score and the
three covariates there is little change in the coefficients, and only a minor reduction in their
standard errors, although the coefficient for ‘Black’ changes in its point estimate (though it is
non-significant in both cases) and the standard error increases a little for the model that includes
population structure above the individual level.

In terms of the share of the variation at the network, area and school level (the penultimate
column of Table 2) the pattern is similar to that described above for the null model (Table 1).
In all models, the coefficient estimates for female and age are found to be statistically significant
and, conditional on the addition of the covariates to the model, the school and area level variance
components reduce. The clique-3 variance components are also reduced by the inclusion of
covariates and, interestingly, in the model with all features of the population structure included
(the penultimate column) there is now a slightly larger variance for the clique-2 level than the
clique-3 level, though both component estimates are reduced, compared with the corresponding
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results from the null model. At these levels, the covariates may be partly explaining homophily
(people with similar characteristics tend to be more likely to be connected (McPherson et al.,
2001)) in the networks with respect to age, sex and ethnic group.

In terms of model fit, the model with all features (the penultimate column) shares the lowest
DIC with the model that includes areas and social networks, but not school level (DIC = 2674);
this may suggest that the individual characteristics added to these models are to some extent
clustered within schools and are thus accounting for some of the school differences. Interestingly,
in this example a similar conclusion would have been reached regarding the individual level
relationship between academic performance and the three covariates if a single-level regression
model had been estimated with the individual level data (the final column), as was found with
the more sophisticated models in Table 2 that take into account population structure. However,
the single-level regression would not allow any potentially important substantive inferences to
be made about variation in academic performance at the levels of the population structure above
the individual. The fact that models that allow for population structure above the individual
level have a statistically better fit suggests that social networks, schools and areas should not be
ignored in the analysis.

In Table 3, an analysis similar to that of Tables 1 and 2 was carried out, but this time the
network level was defined as ego-net membership based on the directed adjacency matrix D,
with the weight matrix calculated as a row-standardized version of D. Defining the network
by ego-net as opposed to cliques results in slightly better goodness of fit and similar coeffi-
cients for the individual level covariates and their standard errors for the model as found, for
example, in Table 2 for the corresponding models where networks were defined via cliques.
The individual level variance component estimate reduces more in the ego-net than for the
corresponding clique model, however, and the network variance is higher for the single ego-
net component than for either of the clique estimates for the corresponding model in Table 2.

Table 3. Main effects MMMC models†

Parameter ztotscore for the following levels:

Network School Area School Network School Area School
only + network + network + area only + network + network + area

+ network + network

Constant −0.01 0.03 0.07 0.04 −0.09 −0.09 −0.07 −0.08
(0.03) (0.09) (0.06) (0.1) (0.04) (0.07) (0.09) (0.09)

Black −0.06 −0.03 −0.04 −0.03
(0.09) (0.09) (0.09) (0.08)

Female 0.17 0.16 0.17 0.17
(0.06) (0.06) (0.06) (0.06)

Age −0.13 −0.12 −0.12 −0.12
(0.02) (0.02) (0.02) (0.02)

School variance 0.08 0.06 0.03 0.01
Area variance 0.07 0.03 0.04 0.03
Network variance

Ego-net 0.17 0.20 0.15 0.19 0.15 0.15 0.15 0.15
Individual level 0.926 0.870 0.902 0.873 0.873 0.861 0.856 0.862

variance

DIC 2737 2697 2713 2697 2681 2674 2669 2672

†Dependent variable, ztotscore. Social networks are defined by ego-net membership.
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Table 4. MMMC and network disturbance models with school indicators as fixed covariates†

Parameter ztotscore for the following models:

Constant + school indicators Full model

MMMC Network disturbance MMMC Network disturbance

Constant −0.004 (0.110) 0.001 (0.104) 0.030 (0.115) 0.034 (0.110)
School 2 0.259 (0.153) 0.235 (0.152) 0.076 (0.160) 0.043 (0.159)
School 3 −0.196 (0.128) −0.205 (0.129) −0.174 (0.134) −0.180 (0.128)
School 4 −0.107 (0.131) −0.136 (0.128) −0.112 (0.130) −0.131 (0.126)
School 5 −0.327 (0.151) −0.342 (0.156) −0.296 (0.156) −0.307 (0.154)
School 6 0.344 (0.165) 0.322 (0.164) −0.012 (0.178) −0.044 (0.178)
School 7 0.138 (0.156) 0.123 (0.158) −0.185 (0.173) −0.207 (0.170)
School 8 0.407 (0.167) 0.388 (0.167) 0.050 (0.185) 0.022 (0.180)
School 9 0.258 (0.151) 0.251 (0.152) −0.083 (0.167) −0.099 (0.166)
School 10 −0.327 (0.173) −0.327 (0.173) −0.612 (0.189) −0.626 (0.186)
Black 0.006 (0.092) 0.015 (0.093)
Female 0.165 (0.062) 0.173 (0.062)
Age −0.119 (0.025) −0.125 (0.025)
Ego-net variance 0.193 0.165
Individual variance 0.872 0.855
DIC 2698 2674
ρ̂ 0.107 (0.041) 0.111 (0.041)
AIC 2711 2675
σ̂2 0.917 0.883

†The full model also includes all individual level covariates. Dependent variable, academic performance (ztotscore);
reference school, school 1.

The school and area level variance components are similar for the full model in Table 3 and
for the comparable model where the network is defined via cliques (the penultimate column of
Table 2).

In Table 4, the MMMC and network auto-correlation models were compared as closely
as possible for models that include only networks and school information. Areas were not
considered in the comparison because of their close correspondence to schools, and also because
the Adolescent Health Study is a school-based study. The model comparison was achieved as
follows. Because the sample is evenly distributed across the schools, nine fixed indicator variables
were created for the 10 schools, choosing the first school as the reference group. An MM model
was then fitted with networks defined by ego-nets, and an ND model was also estimated, using
the same weight information in both cases: the row standardized version of the adjacency
matrix. An MM rather than an MMMC model is fitted for this comparison, because only one
classification is used in this model (ego-nets), and schools are added as fixed covariates. The
network disturbance models were run using the lnam command in the sna package in R, and the
results are estimated via maximum likelihood, so that their goodness-of-fit statistic is based on
the Akaike information criterion AIC rather than DIC for the MM models that were estimated
via Markov chain Monte Carlo sampling though the two measures are comparable. The ND
model was compared with the MM model because in both models the network information
appears in the random (error) part of the model. A network effects model was not considered
because in that case the effect of the social network is modelled directly through the response
variable. In Table 4 a model was fitted with just a constant and the school indicators. A full model
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was also specified, that also includes the three individual level covariates. The two models have
comparable results in terms of the estimated coefficients, their standard errors and the model
goodness of fit.

5. Conclusion and discussion

An approach for estimating the nature and extent of social network dependences on individual
responses allowing for other group dependences has been demonstrated, using MMMC models.
This approach takes into account social network and group dependences when estimating an in-
dividual level relationship and allows the variation in individual level responses at classifications
of the population structure above the individual level to be compared. The model can be fitted
in software for multilevel modelling, such as MLwiN. The model results suggest that network
dependences exist, even when other classifications of the population structure such as school
and areas are accounted for. A practical approach for estimating the relative share of variation
in the individual response at the group and network levels has been proposed, involving the use
of average network subgroup membership weights, and this suggests that some of the variation
in academic performance can be attributed to social networks.

These new approaches compare well in terms of goodness of fit with existing models used for
social network dependences, such as network auto-correlation models. Substantively, there are
implications for assuming these models: in particular it is assumed for these models that the
social network is exogenous to the individual response. This is a different assumption from those
models that allow the coevolution of social networks and behaviour, and hence selection and
influence, to be assessed with longitudinal network data: stochastic actor-based models (Snijders
et al., 2010). The models presented here are not an alternative to stochastic actor-based models;
they have a different role. In a descriptive sense, the models presented here allow the variation in
individual responses to be assessed for different aspects of the population structure, including
social networks. Hence, using these MMMC approaches, it is possible to ask ‘Is there more
variation in academic performance between networks, between schools or between areas?’, and
to obtain measures of variation before and after the addition of other variables to the model,
such as individual characteristics, that might capture homophily in the social networks. This
approach could be applied to other situations given the availability of data, e.g. individuals,
households, social networks and geographical groups.

Various further extensions could be made to the MMMC model. For example, given the
multiple waves of the Adolescent Health Study data, time could be included in the model to
allow further inferences about variations in individual responses through time in the context
of other population structural features. Also, covariates could be given random coefficients
for different classifications. For example, it is possible to make ‘female’ random for cliques or
ego-nets to assess whether social network structure has a different association with the response
variable for girls from that for boys. The MMMC model could also be applied to a dichotomous
response, and other categorical responses could also be modelled, e.g. an ordinal response for
self-assessed health status (excellent, good, fair or poor). Another application of these methods
is to multiplex networks, where the different types of connection are specified as a series of
weight matrices in the MMMC model specification. Moreover, a bivariate response could be
considered within the MMMC model framework. Finally, other data could be combined with
the network data in the MMMC model framework; for example, census information could be
combined with the survey data at area level, if the areas were identifiable in the survey data.

Models that are based on ego-net connections capture direct relationships between people,
whereas those that involve cliques explicitly capture higher order substructures in the network.
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For this Adolescent Health Study example, both models performed similarly in terms of good-
ness of fit. The decision about how to model the network may depend on the substantive theories
to be tested; whether these relate to clusters in the network or simply to connected individuals.
The MMMC model framework would allow other network configurations to be included and
an important part of the modelling is deciding what social network definitions to include.
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