811 research outputs found

    Ad- and desorption of Rb atoms on a gold nanofilm measured by surface plasmon polaritons

    Full text link
    Hybrid quantum systems made of cold atoms near nanostructured surfaces are expected to open up new opportunities for the construction of quantum sensors and for quantum information. For the design of such tailored quantum systems the interaction of alkali atoms with dielectric and metallic surfaces is crucial and required to be understood in detail. Here, we present real-time measurements of the adsorption and desorption of Rubidium atoms on gold nanofilms. Surface plasmon polaritons (SPP) are excited at the gold surface and detected in a phase sensitive way. From the temporal change of the SPP phase the Rubidium coverage of the gold film is deduced with a sensitivity of better than 0.3 % of a monolayer. By comparing the experimental data with a Langmuir type adsorption model we obtain the thermal desorption rate and the sticking probability. In addition, also laser-induced desorption is observed and quantified.Comment: 9 pages, 6 figure

    Adenome parathyroidien intrathymique: a propos d’un cas

    Get PDF
    Introduction : Les adĂ©nomes parathyroĂŻdiens posent le problĂšme de leur diagnostic topographique. A partir d’un cas clinique d’adĂ©nome parathyroĂŻdien intrathymique, les auteurs rappellent l’intĂ©rĂȘt d’un bilan localisateur prĂ©opĂ©ratoire. Observation : Il s'agit d’un homme ĂągĂ© de 19 ans prĂ©sentant une hyperparathyroĂŻdie primitive. La scintigraphie Ă  laSestamibi a montrĂ© une hyperfixation inhabituelle du radiotraceur au niveau du creux sus sternal, permettant d’évoquer le diagnostic d’un adĂ©nome parathyroĂŻdien intrathymique. Il a Ă©tĂ© rĂ©alisĂ© une adĂ©nectomie en utilisant une voie d’abord cervicale et l'Ă©volution post-opĂ©ratoire Ă©tait favorable. Conclusion : La scintigraphie Sestamibi constitue l'examen de choix pour Ă©tablir le diagnostic topographique des adĂ©nomes parathyroĂŻdiens. Cet examen permet de limiter la voie d’abord chirurgicale et d’éviter les cervicotomies blanches.Mots-clĂ©s : AdĂ©nome parathyroĂŻdien, thymus, scintigraphie

    Cooperative Scattering by Cold Atoms

    Full text link
    We have studied the interplay between disorder and cooperative scattering for single scattering limit in the presence of a driving laser. Analytical results have been derived and we have observed cooperative scattering effects in a variety of experiments, ranging from thermal atoms in an optical dipole trap, atoms released from a dark MOT and atoms in a BEC, consistent with our theoretical predictions.Comment: submitted for special issue of PQE 201

    In situ characterization of an optical cavity using atomic light shift

    Full text link
    We report the precise characterization of the optical potential obtained by injecting a distributed-feedback erbium-doped fiber laser (DFB EDFL) at 1560 nm to the transversal modes of a folded optical cavity. The optical potential was mapped in situ using cold rubidium atoms, whose potential energy was spectrally resolved thanks to the strong differential light shift induced by the 1560 nm laser on the two levels of the probe transition. The optical potential obtained in the cavity is suitable for trapping rubidium atoms, and eventually to achieve all-optical Bose-Einstein condensation directly in the resonator.Comment: 3 pages, 4 figure

    Experimental perspectives for systems based on long-range interactions

    Full text link
    The possibility of observing phenomena peculiar to long-range interactions, and more specifically in the so-called Quasi-Stationary State (QSS) regime is investigated within the framework of two devices, namely the Free-Electron Laser (FEL) and the Collective Atomic Recoil Laser (CARL). The QSS dynamics has been mostly studied using the Hamiltonian Mean-Field (HMF) toy model, demonstrating in particular the presence of first versus second order phase transitions from magnetized to unmagnetized regimes in the case of HMF. Here, we give evidence of the strong connections between the HMF model and the dynamics of the two mentioned devices, and we discuss the perspectives to observe some specific QSS features experimentally. In particular, a dynamical analog of the phase transition is present in the FEL and in the CARL in its conservative regime. Regarding the dissipative CARL, a formal link is established with the HMF model. For both FEL and CARL, calculations are performed with reference to existing experimental devices, namely the FERMI@Elettra FEL under construction at Sincrotrone Trieste (Italy) and the CARL system at LENS in Florence (Italy)

    Highly versatile atomic micro traps generated by multifrequency magnetic field modulation

    Full text link
    We propose the realization of custom-designed adiabatic potentials for cold atoms based on multimode radio frequency radiation in combination with static inhomogeneous magnetic fields. For example, the use of radio frequency combs gives rise to periodic potentials acting as gratings for cold atoms. In strong magnetic field gradients the lattice constant can be well below 1 micrometer. By changing the frequencies of the comb in time the gratings can easily be propagated in space, which may prove useful for Bragg scattering atomic matter waves. Furthermore, almost arbitrarily shaped potential are possible such as disordered potentials on a scale of several 100 nm or lattices with a spatially varying lattice constant. The potentials can be made state selective and, in the case of atomic mixtures, also species selective. This opens new perspectives for generating tailored quantum systems based on ultra cold single atoms or degenerate atomic and molecular quantum gases.Comment: 12 pages, 6 figure

    Fermat-linked relations for the Boubaker polynomial sequences via Riordan matrices analysis

    Get PDF
    The Boubaker polynomials are investigated in this paper. Using Riordan matrices analysis, a sequence of relations outlining the relations with Chebyshev and Fermat polynomials have been obtained. The obtained expressions are a meaningful supply to recent applied physics studies using the Boubaker polynomials expansion scheme (BPES).Comment: 12 pages, LaTe

    Probing quantum phases of ultracold atoms in optical lattices by transmission spectra in cavity QED

    Get PDF
    Studies of ultracold atoms in optical lattices link various disciplines, providing a playground where fundamental quantum many-body concepts, formulated in condensed-matter physics, can be tested in much better controllable atomic systems, e.g., strongly correlated phases, quantum information processing. Standard methods to measure quantum properties of Bose-Einstein condensates (BECs) are based on matter-wave interference between atoms released from traps which destroys the system. Here we propose a nondestructive method based on optical measurements, and prove that atomic statistics can be mapped on transmission spectra of a high-Q cavity. This can be extremely useful for studying phase transitions between Mott insulator and superfluid states, since various phases show qualitatively distinct light scattering. Joining the paradigms of cavity quantum electrodynamics (QED) and ultracold gases will enable conceptually new investigations of both light and matter at ultimate quantum levels, which only recently became experimentally possible. Here we predict effects accessible in such novel setups.Comment: 6 pages, 3 figure

    Convergent activation of two-pore channels mediated by the NAADP-binding proteins JPT2 and LSM12

    Get PDF
    The second messenger nicotinic acid adenine dinucleotide phosphate (NAADP) evokes calcium ion (Ca2+) release from endosomes and lysosomes by activating two-pore channels (TPCs) on these organelles. Rather than directly binding to TPCs, NAADP associates with proteins that indirectly confer NAADP sensitivity to the TPC complex. We investigated whether and how the NAADP-binding proteins Jupiter microtubule-associated homolog 2 (JPT2) and like-Sm protein 12 (LSM12) contributed to NAADP-TPC-Ca2+ signaling in human cells. Biochemical and functional analyses revealed that recombinant JPT2 and LSM12 both bound to NAADP with high affinity and that endogenous JPT2 and LSM12 independently associated with TPC1 and TPC2. On the basis of knockout and rescue analyses, both NAADP-binding proteins were required to support NAADP-evoked Ca2+ signaling and contributed to endolysosomal trafficking of pseudotyped coronavirus particles. These data reveal that the NAADP-binding proteins JPT2 and LSM12 convergently regulate NAADP-evoked Ca2+ release and function through TPCs
    • 

    corecore