148 research outputs found

    Association of smoking and cancer with the risk of venous thromboembolism: the Scandinavian Thrombosis and Cancer cohort

    Get PDF
    Smoking is a well-established risk factor for cancer, and cancer patients have a high risk of venous thromboembolism (VTE). Conflicting results have been reported on the association between smoking and risk of VTE, and the effect of smoking on VTE-risk in subjects with cancer is scarcely studied. We aimed to investigate the association between smoking and VTE in subjects with and without cancer in a large population-based cohort. The Scandinavian Thrombosis and Cancer (STAC) cohort included 144,952 participants followed from 1993–1997 to 2008–2012. Information on smoking habits was derived from self-administered questionnaires. Active cancer was defined as the first two years following the date of cancer diagnosis. Former smokers (n = 35,890) and those with missing information on smoking status (n = 3680) at baseline were excluded. During a mean follow up of 11 years, 10,181 participants were diagnosed with cancer, and 1611 developed incident VTE, of which 214 were cancer-related. Smoking was associated with a 50% increased risk of VTE (HR 1.49, 95% CI 1.12–1.98) in cancer patients, whereas no association was found in cancer-free subjects (HR 1.07, 95% CI 0.96–1.20). In cancer patients, the risk of VTE among smokers remained unchanged after adjustment for cancer site and metastasis. Stratified analyses showed that smoking was a risk factor for VTE among those with smoking-related and advanced cancers. In conclusion, smoking was associated with increased VTE risk in subjects with active cancer, but not in those without cancer. Our findings imply a biological interaction between cancer and smoking on the risk of VTE

    Development of a Precision Medicine Workflow in Hematological Cancers, Aalborg University Hospital, Denmark

    Get PDF
    Within recent years, many precision cancer medicine initiatives have been developed. Most of these have focused on solid cancers, while the potential of precision medicine for patients with hematological malignancies, especially in the relapse situation, are less elucidated. Here, we present a demographic unbiased and observational prospective study at Aalborg University Hospital Denmark, referral site for 10% of the Danish population. We developed a hematological precision medicine workflow based on sequencing analysis of whole exome tumor DNA and RNA. All steps involved are outlined in detail, illustrating how the developed workflow can provide relevant molecular information to multidisciplinary teams. A group of 174 hematological patients with progressive disease or relapse was included in a non-interventional and population-based study, of which 92 patient samples were sequenced. Based on analysis of small nucleotide variants, copy number variants, and fusion transcripts, we found variants with potential and strong clinical relevance in 62% and 9.5% of the patients, respectively. The most frequently mutated genes in individual disease entities were in concordance with previous studies. We did not find tumor mutational burden or micro satellite instability to be informative in our hematologic patient cohort
    corecore