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Abstract

Acute myeloid leukaemia (AML) is characterised by phenotypic heterogeneity, which we

hypothesise is a consequence of deregulated differentiation with transcriptional reminis-

cence of the normal compartment or cell-of-origin. Here, we propose a classification system

based on normal myeloid progenitor cell subset-associated gene signatures (MAGS) for

individual assignments of AML subtypes. We generated a MAGS classifier including the

progenitor compartments CD34+/CD38- for haematopoietic stem cells (HSCs), CD34+/

CD38+/CD45RA- for megakaryocyte-erythroid progenitors (MEPs), and CD34+/CD38+/

CD45RA+ for granulocytic-monocytic progenitors (GMPs) using regularised multinomial

regression with three discrete outcomes and an elastic net penalty. The regularisation

parameters were chosen by cross-validation, and MAGS assignment accuracy was vali-

dated in an independent data set (N = 38; accuracy = 0.79) of sorted normal myeloid sub-

populations. The prognostic value of MAGS assignment was studied in two clinical cohorts

(TCGA: N = 171; GSE6891: N = 520) and had a significant prognostic impact. Furthermore,

multivariate Cox regression analysis using the MAGS subtype, FAB subtype, cytogenetics,

molecular genetics, and age as explanatory variables showed independent prognostic

value. Molecular characterisation of subtypes by differential gene expression analysis, gene

set enrichment analysis, and mutation patterns indicated reduced proliferation and overrep-

resentation of RUNX1 and IDH2 mutations in the HSC subtype; increased proliferation and

overrepresentation of CEBPA mutations in the MEP subtype; and innate immune activation

and overrepresentation of WT1 mutations in the GMP subtype. We present a differentiation-

dependent classification system for AML subtypes with distinct pathogenetic and prognostic

importance that can help identify candidates poorly responding to combination chemother-

apy and potentially guide alternative treatments.
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Introduction

Compelling evidence demonstrates that acute myeloid leukaemia (AML) is of clonal origin

and represents the progeny of a single cell that enters leukaemic transformation due to multi-

ple genetic events that impair cell differentiation and apoptosis and invoke uncontrolled cell

proliferation. However, the evolution from the first somatic mutation to full-blown AML is

not well mapped. The simplest models predict that each newly acquired somatic mutation

during oncogenesis confers a selective advantage that drives successive waves of clonal expan-

sion and deregulated differentiation, with the fittest clone becoming dominant at diagnosis

and during relapse. [1,2] The understanding of linage-specific progenitor commitment during

AML transformation and subsequent clonal evolution is fundamental to the pathogenesis and

treatment of AML. We speculate that the genetic abnormality in clinically relevant clones can

be traced back to the normal compartment or cell of origin (COO)–as we have previously

shown for lymphoid B-cell malignancies [3–6]–and that knowledge of the COO and its dereg-

ulation could provide novel molecular and oncogenic insight into AML subtypes.

Myeloid and lymphoid malignancies are particularly well suited for evaluating the cellular

origin on malignant transformation due to our understanding of the normal haematopoietic

hierarchy and the availability of analytical tools for the examination of phenotypically defined

subpopulations at the single-cell level. Recently, we described a procedure to identify and

study the gene expression of immunophenotype-based flow-sorted minor subsets. [7] These

subsets can be profiled by global gene expression, and using statistical modelling, we were able

to define normal subset-specific B-cell-associated gene signatures (BAGS) for assignment and

prognostic evaluation in B-cell malignancies. [4,8,9] We found that the diagnostic heterogene-

ity in multiple myeloma, chronic lymphocytic leukaemia, and diffuse large B-cell lymphoma

reflects a link between differentiation and oncogenesis–a contribution often overlooked.

The phenotypic heterogeneity of AML was initially defined by cytology decades ago, when

the French-American-British (FAB) Cooperative Group developed a classification system

based on morphologic and cytochemical phenotypes associated with normal end stage myelo-

poiesis. However, as cytogenetics was introduced, the prognostic impact of the FAB subtypes

(M0-M7) became unclear. [10–16] Immunophenotyping demonstrated that poorly differenti-

ated AML blasts are deregulated and differentially disrupted early stem or progenitor cells;

however, no uniform leukaemic phenotype has been defined by CD34 and CD38 membrane

markers. [17] Here, we hypothesise that the phenotypic heterogeneity of AML is a conse-

quence of deregulated differentiation with transcriptional reminiscence of the normal stem or

progenitor COO phenotype. We generated myeloid progenitor cell subset-associated gene sig-

natures (MAGS) and assigned subtypes in clinical cohorts to study their prognostic and poten-

tial pathogenetic impacts.

Material and methods

Data sets

This study is based on data sets already published and publicly available. Sorted normal mye-

loid data from healthy donors were retrieved from the Gene Expression Omnibus Database

(GEO) and are referred to as the GSE63270, [18] GSE42519, [19] GSE19599, [20] GSE17054,

[21] and GSE19429 [22] cohorts. For GSE63270, [18] and GSE17054, [21] human bone mar-

row mononuclear cells (BMMCs) from healthy donors were purchased from ALLCELLS

(Emeryville, CA) where collection protocols and donor informed consent are approved by

an institutional review board (IRB) in compliance to State and Federal regulations. For

GSE42519, [19] GSE19599, [20] and GSE19429 [22] BMMCs from healthy donors were
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collected and analysed after IRB approval and written informed consent was obtained. The

samples were previously phenotyped by multiparametric flow cytometry (MFC) and fluores-

cence-activated cell sorting (FACS) into myeloid subpopulations, and gene expression profiles

(GEPs) were obtained using an Affymetrix Human Genome U13z½3 Plus 2.0 Array GeneChip

(Affymetrix, Santa Clara, CA). Sorted normal myeloid data were restricted to those five

cohorts due to the limited availability of publicly available data sets with comparable FACS

and GEP protocols. The subpopulation compositions and cell sorting details are summarised

in S1 and S2 Tables. The myeloid subpopulations of interest for the present study were

CD34+/CD38- haematopoietic stem cells (HSCs), CD34+/CD38+/CD45RA+ granulocytic-

monocytic progenitors (GMPs), and CD34+/CD38+/CD45RA- megakaryocyte-erythroid pro-

genitors (MEPs).

Clinical AML data were retrieved from the GEO database and The Cancer Genome Atlas

(TCGA) database and are referred to as the GSE6891 [23,24] and TCGA [25] cohorts, respec-

tively. For GSE6891, [23,24] and TCGA [25] bone marrow aspirates from AML patients were

obtained and analysed after patients provided written informed consent in accordance with

the Declaration of Helsinki, and the study was approved by all participating institutional

review boards. The data sets were chosen because the GEPs were generated in a comparable

manner as those of the sorted normal myeloid data sets, and they contained information on

age, gender, FAB subtype, cytogenetic risk score, WBC, disease outcome, and genetic aberra-

tions. The metadata of both cohorts are summarised in the S1 Data (S1 and S3 Tables).

Statistical analysis

All statistical analyses were performed with R version 3.3.3. [26] The statistical analysis is sum-

marised here; for comprehensive documentation, see the (S1 Data). This study followed the

guidelines of omics-directed medicine [27–29] whenever possible. Prior to the statistical analy-

sis, all gene expression data were background corrected and normalised using the Robust Mul-

tichip Average (RMA) [30] algorithm and summarised at the gene level using a Brainarray

custom CDF for the Affymetrix Human Genome U133 Plus 2.0 GeneChip (version 20.0). The

clinical cohorts were RMA normalised per cohort, whereas the normal myeloid cohorts were

combined into one meta-cohort prior to RMA normalisation. Six normal myeloid HSC, GMP,

and MEP samples were randomly selected and used as a training cohort. The remaining 38

normal myeloid samples were used as a validation cohort.

The MAGS classifier for the HSC, MEP, and GMP subsets was obtained from regularised

multinomial regression with the cell type as the discrete outcome and the median-centred

GEP of the training cohort as the explanatory variable. The model was fitted with an elastic

net penalty. [31] The regularisation parameters were determined by cross-validation, and the

parameters with the lowest multinomial deviance were chosen. Genes with non-zero coeffi-

cients were defined as predictive. Based on those genes, assignment probabilities were esti-

mated to identify the most likely MAGS subtype of a sample. The prediction accuracy of the

MAGS classification was validated in the validation cohort. To compensate for cohort-based

technical batch effects, the validation cohort was median centred and scaled to have the same

variance as the training cohort. The same procedure was applied to the clinical cohorts fol-

lowed by cohort-based MAGS subtype assignment according to the subtype with the highest

predicted probability score and assigning 15% of the samples with the lowest assignment prob-

ability as unclassified (UC). To improve statistical power, clinical cohorts were combined into

a clinical meta-cohort following MAGS assignment. For biological characterisation, the GEPs

of the clinical meta-cohort were batch corrected using the empirical Bayes approach, ComBat,

[32] implemented in the Bioconductor package “sva” (version 3.18.0). [33]
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Survival analyses were performed using the Kaplan-Meier method, log-rank test statistics,

and Cox proportional hazards regression analysis for the individual cohorts and the combined

clinical meta-cohort. In addition, the prognostic importance of 13 other explanatory variables

(FAB subtype, cytogenetic risk score, CEBPA aberrations, FLT3-itd aberrations, FLT3-tkd aber-

rations, IDH1 aberrations, IDH2 aberrations, KRAS aberrations, NPM1 aberrations, NRAS
aberrations, white blood cell count (WBC), age, and cohort) was investigated by univariate

Cox proportional hazards regression analysis in the TCGA (N = 122), GSE6891 (N = 439), and

meta-cohort (N = 561), limited to samples with complete records for all investigated variables

(for detailed information, see S1 Data). MAGS was evaluated as an independent explanatory

variable by multivariate Cox proportional hazards regression analysis for overall survival in all

three cohorts, including explanatory variables tested with prognostic effects in the univariate

regression analysis in the respective cohorts. Cytogenetic risk score could not be investigated as

a confounding variable in the meta-cohort due to differences in cytogenetic risk group stratifi-

cation between the two cohorts. In the GSE6891 cohort, cytogenetic risk score stratification

was based on cytogenetic abnormalities only, [23] whereas in the TCGA cohort, cytogenetic

risk score stratification was based on cytogenetics and molecular genetics. [25,34,35] Instead,

MAGS was tested for prognostic impact against the cytogenetic risk scores independently in

the two clinical cohorts.

MAGS validation through biological characterisation

The biological characterisation and identification of biological processes associated with

MAGS subtypes were investigated through differential gene expression (DGE) analysis, gene

set enrichment analysis, and the identification of subtype-specific mutation patterns for well-

documented driver mutations. To increase detection power, analyses were conducted for the

meta-cohort, but they were restricted to clinical samples with MAGS assignment

probabilities� 0.75, if not stated otherwise.

DGE analysis. Was performed in R using the limma Bioconductor package (version:

3.26.9). [36,37] To identify MAGS subtype-specific differences, clinical samples assigned to

one subtype were compared with the remaining samples (Rest), resulting in the following

three comparisons: i) HSC vs. Rest, ii) GMP vs. Rest, and iii) MEP vs. Rest. For summary sta-

tistics, p-values were adjusted using the Benjamini and Hochberg algorithm, [38] and genes

with p� 0.001 were defined as differentially expressed.

Enrichment analysis. Was conducted using two different approaches: a classical Gene

Ontology (GO) annotation using Fisher’s exact test to identify over-represented GO terms

in differentially expressed genes and a computational gene set enrichment analysis (GSEA)

approach developed by the Broad Institute that uses a pre-ranked gene list of all profiled

genes (S1 Data). The GSEA was performed using the GSEA desktop application (version 3.0)

[39] using 2000 permutations of gene set randomisation and the default settings. Gene sets

included in the analysis were selected from the Molecular Signature Database (MSigDB, v6.0)

[40] using the Hallmark, [39,41] C2-CP, [39] and C3-TFT MSigDB collections. [39,42] Gene

sets including fewer than 15 or more than 500 genes were excluded from the analysis. Gene

sets with an adjusted p� 0.05 and a false discovery rate (FDR) q-value for normalised enrich-

ment scores (ES)� 0.25 were considered significantly enriched. [39]

Identification of subtype-specific mutation patterns. Was performed for well-docu-

mented driver mutations across seven AML oncogenes (CEBPA, IDH1, IDH2, FLT3 [including

both the FLT3-itd and the FLT3-tkd aberrations], NPM1, NRAS, and KRAS) in the meta-cohort,

irrespective of the MAGS assignment probabilities but limited to samples with recorded muta-

tion information (N = 587: NGSE6891 = 457, NTCGA = 130). In addition, a second analysis was
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conducted for 112 genes associated with AML that had been previously characterised and classi-

fied. [43] Mutation records for those genes were extracted from exome-wide somatic mutation

data available for a subset of the TCGA cohort (N = 130). [25] Potential associations with

MAGS subtypes were investigated for each mutation using Fisher’s exact tests with a signifi-

cance cut-off level of 0.05.

Results

Generation and validation of MAGS

The transcriptomic identity of normal myeloid subsets was validated by principal component

analysis (Fig 1). Batch effects were partially removed using RMA normalisation (Fig 1A and

1B), and the subset identity could be confirmed for the three progenitor compartments through

subset-specific segregation into discrete clusters (Fig 1C and 1D), allowing subsequent identifi-

cation of MAGS. The MAGS classifier with the smallest deviance determined by cross-valida-

tion consisted of 92 genes (S4 Table, S1 Fig). The HSC subtype signature included 44 predictive

genes, 30 of which were subtype-specific (68.2%); the GMP subtype signature included 37

predictive genes, 20 of which were subtype-specific (62.2%); and the MEP subtype signature

included 33 predictive genes, 19 of which were subtype-specific (57.6%; Fig 2). The highest

overlap of predictive genes was between the HSC and GMP subsets (N = 8), followed by GMP

and MEP (N = 6) and HSC and MEP (N = 6). The prediction accuracy of the MAGS classifier

was validated using sorted normal myeloid samples (N = 38: NHSC = 26, NGMP = 7, NMEP = 5),

showing a prediction accuracy of 78.95% when all samples were assigned to one of the three

MAGS subtypes and 90.63% when defining 15% of the samples with the lowest MAGS assign-

ment probability as UC. For both assignment strategies, the prediction accuracy of the GMP

and MEP subtypes was 100%. The MAGS assignment inconsistencies were restricted to the

HSC subtype (Table 1A and 1B). Moreover, the majority of the samples wrongly assigned

belonged to the GSE19429 cohort (six of the eight samples).

MAGS assignment of clinical samples and prognostic impact

Clinical AML samples from two independent cohorts of adult patients diagnosed with de novo
AML were classified into MAGS subtypes (S3 Table). We allowed 15% of the samples within

each cohort to be assigned as UC, resulting in an assignment probability cut-off� 0.71 (TCGA

cohort = 0.71, GSE6891 cohort = 0.72). An unambiguous MAGS subtype assignment was

achieved, and the subtype frequencies did not vary between the two clinical cohorts (Table 2).

Subtype frequencies ranged from 28.1–31.2% in the GSE6981 cohort and 26.4–30.8% in the

TCGA cohort when ignoring the UC-assigned samples. Furthermore, the GMP subtype was

the most frequently assigned in both cohorts, followed by MEP and HSC.

The prognostic impact of the MAGS subtypes was analysed both individually and collec-

tively in a meta-analysis combining the MAGS-assigned samples of the GSE6891 and TCGA

cohorts. The MAGS assignment showed a significant prognostic association with overall sur-

vival (Fig 3; log-rank test p� 0.001). The lineage-committed MAGS subtypes GMP and MEP

had superior prognoses compared with the undifferentiated AMLs captured by the HSC sub-

type. This was supported by univariate Cox regression analysis conducted for the GSE6891

and the cohort-adjusted clinical meta-cohort, revealing significant differences between the

GMP and HSC (GSE6891: HR = 0.63, p< 0.001; meta-cohort: HR = 0.64, p< 0.001), the MEP

and HSC (GSE6891: HR = 0.53, p� 0.001; meta-cohort: HR = 0.51, p� 0.001), and the UC

and HSC (GSE6891: HR = 0.70, p = 0.03; meta-cohort: HR = 0.60, p< 0.001; Table 3) sub-

types. In the TCGA cohort, significant differences were only observed between the MEP and

HSC (HR = 0.44, p = 1.9e-03) and the UC and HSC (HR = 0.37, p = 1.6e-03; Table 3) subtypes.
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Fig 1. Principal component analysis (PCA) to illustrate variance between samples characterized by gene expression profiles of flow-sorted normal

myeloid progenitor subsets. (A) The PCA conducted for the meta-cohort of normal myeloid samples that were RMA normalized before combination

and includes all myeloid subsets available. (B) The PCA conducted for the meta-cohort of normal myeloid samples that were combined prior to RMA

normalization and includes all myeloid subsets available. (C) The PCA conducted for the meta-cohort described in (B) but limited to samples identified

as early (HSC) and late (GMP, MEP) hematopoietic progenitors by FACS. (D) The PCA conducted for the meta-cohort described in (B) but limited to

samples that were included in the training-cohort and median centered. Each data point represents the expression profile of one sample. In A-B,

samples are color-coded based on their cohort identity; for C-D, samples are color-coded according to their myeloid progenitor subset identity (HSC,

GMP, MEP). Samples with similar expression profiles will cluster together. Axis labels indicate the principal component (PC) plotted and the

proportion of the variance explained by that PC. PCs are derived by orthogonal data transformation to reduce dimensionality and represent the

directions of the data that explain a maximal amount of variation.

https://doi.org/10.1371/journal.pone.0229593.g001
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Moreover, multivariate Cox proportional hazards analysis conducted for the three cohorts

(TCGA, GSE6891, meta-cohort) demonstrated that the MAGS subtypes added significant

prognostic information that was not already explained by FAB subtype, cytogenetics, molecu-

lar genetics (well-documented driver mutations in CEBPA, FLT3, IDH1, IDH2, KRAS, NPM1,

or NRAS), or age (Table 4).

Fig 2. Venn diagram of predictive genes included in the MAGS classification.

https://doi.org/10.1371/journal.pone.0229593.g002

Table 1. MAGS prediction accuracy assigning 100% (A) or 85% (B) of the samples to the defined MAGS subtypes HSC, GMP, MEP, and an additional UC subtype.

A) Predicted Invalid Prediction (%)

Observed HSC (%) MEP (%) GMP (%) UC (%)

HSC (N = 26) 18 (69.2) 4 (15.4) 4 (15.4) - 8 (30.8)

MEP (N = 5) 0 (0) 5 (100) 0 (0) - 0 (0)

GMP (N = 7) 0 (0) 0 (0) 7 (100) - 0 (0)

B) Predicted Invalid Prediction (%)

Observed HSC (%) MEP (%) GMP (%) UC (%)

HSC (N = 26) 17 (65.4) 3 (11.5) 0 (0) 6 (23.1) 9 (34.6)

MEP (N = 5) 0 (0) 5 (100) 0 (0) 0 (0) 0 (0)

GMP (N = 7) 0 (0) 0 (0) 7 (100) 0 (0) 0 (0)

The prediction accuracy was estimated in the validation-cohort (N = 38). Abbreviations: HSC, hematopoietic stem cells; GMP, granulocytic-monocytic progenitors;

MEP, megakaryocyte-erythroid, UC, unclassified.

https://doi.org/10.1371/journal.pone.0229593.t001
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DGE and functional annotation of enriched gene sets

To assess biological differences between MAGS subtypes, we performed DGE analysis on 573

samples and compared each subtype with the combined other subtypes: HSC vs. Rest, GMP

vs. Rest, and MEP vs. Rest. The largest number of differentially expressed genes (DEGs) was

identified for the GMP subtype (NDEG = 6414), followed by the MEP (NDEG = 4279) and HSC

(NDEG = 4071) subtypes. The most distinct DGE profile (number of subtype-specific DEGs)

was discovered for the GMP subtype with 1657 DEGs, followed by MEP with 935 and the HSC

subtype with 776 (S2 Fig). The top DEGs for the GMP and MEP subtypes overlapped (HBD,

ALAS2, SPTA1, KLF1, EPB42, AHSP, and SELENBP1; S5A–S5C Table). They were upregulated

in the MEP subtype and downregulated in the GMP subtype. Moreover, most of those genes

were involved in erythrocyte differentiation (KLF1, ALAS2, and AHSP) or erythrocyte mem-

brane or haemoglobin functions (HBD, SPTA1, and EPB42), which indicates transcriptional

discrimination between erythrocytes and other cells. Hence, the results provide biological

proof of concept that the MAGS classification of clinical AML samples enables separation into

megakaryocyte-erythroid linage and granulocytic-monocytic linage COO subtypes. In con-

trast, the top DEGs associated with the HSC subtype were subtype-specific and did not reflect

any lineage commitment.

Table 2. Distributions and frequencies of assigned MAGS subtypes across two clinical cohorts: TCGA (N = 182) and GSE6891 (N = 520). Two-sided Fishers exact

tests were used to determine significantly different distributions across data sets (p = 0.99).

Cohort HSC (%) MEP (%) GMP (%) UC (%) Total (%)

TCGA 50 (27.5) 48 (26.4) 56 (30.8) 28 (15.4) 182 (100)

GSE6891 146 (28.1) 134 (25.8) 162 (31.2) 78 (15.0) 520 (100)

In total, 85% of clinical samples were assigned to MAGS subtypes (HSC, GMP, MEP), and 15% of each cohort was unclassified (UC).

Abbreviations: HSC, hematopoietic stem cells; GMP, granulocytic-monocytic progenitors, MEP, megakaryocyte-erythroid progenitors; UC, unclassified samples

(assignment frequency of UC = 15%)

https://doi.org/10.1371/journal.pone.0229593.t002

Fig 3. Prognostic validation of the assigned MAGS subtypes for (A) the TCGA-cohort (N = 171), (B) the GSE6892-cohort (N = 520), and (C) the

associated meta-cohort (N = 691), using a frequency cut-off of 85% for MAGS assigned and 15% for samples assigned as unclassified. Kaplan

Meier survival curves were generated for overall survival and P-values were estimated using a log-rank test. Only samples with complete survival

information were included and the number at risk per MAGS subtype are provided for each cohort.

https://doi.org/10.1371/journal.pone.0229593.g003
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To further investigate potential functional patterns associated with the MAGS subtypes,

gene enrichment analysis was performed for only the DEGs and taking all genes into consider-

ation. Enrichment analysis of DEGs annotated to GO terms associated with biological pro-

cesses identified 1066 GO terms enriched for the MEP subtype, followed by 697 for the GMP

subtype and 556 for the HSC subtype. Moreover, general patterns of enriched biological pro-

cesses differed between MAGS subtypes, suggesting different pathogenic courses (S6 Table).

The DEGs detected for the HSC subtype were mainly enriched for cell cycle and metabolic

processes (S6A Table), whereas DEGs in the GMP and MEP subtypes were mainly enriched

for immune system processes and cellular responses to external stimuli, suggesting late pro-

genitor cell functions (S6B and S6C Table).

The GSEA revealed a general downregulation of genes associated with gene sets enriched

in the HSC (Table 5A) and MEP subtypes (Table 5B), whereas genes associated with gene sets

enriched in the GMP subtype were predominantly upregulated (Table 5C). Biological pro-

cesses associated with subtype-specific enriched gene sets differed between subtypes. For the

HSC subtype, enrichment patterns were characterised by a low cell-cycle activity signature

with reduced metabolic rates, suggesting low cell proliferation or a prolonged quiescence

phase (S7A Table, S3A Fig). The gene set enrichment patterns observed for the GMP subtype

revealed a high metabolic activity signature with innate immune activation (S7B Table, S3B

Table 3. Univariate Cox regression analysis for MAGS-assigned clinical cohorts (GSE6891 cohort: N = 520;

TCGA-cohort: N = 171) and the corresponding AML meta-cohort (N = 691) that included both clinical cohorts.

Analyses were performed for overall survival. Samples with missing survival information (TCGA cohort: N = 11) were

excluded. Table columns indicate the total sample size (N), the number of patients that died (Events) per MAGS sub-

type, the associated hazards ration (HR), the 95% lower and upper confidence intervals (CI), and the estimated p-value

(P).

N Events HR 95% CI P

TCGA cohort

HSC 48 40 1

MEP 44 22 0.44 0.26–0.74 1.90e-03��

GMP 52 34 0.68 0.43–1.08 0.1

UC 27 14 0.37 0.20–0.69 1.63e-03��

GSE6891 cohort

HSC 146 115 1

MEP 134 77 0.53 0.40–0.71 2.13e-05���

GMP 162 101 0.63 0.48–0.83 7.86e-04���

UC 78 52 0.70 0.51–0.98 0.03

Meta-cohorta

HSC 194 155 1

MEP 178 99 0.51 0.40–0.65 1.46e-07���

GMP 214 135 0.64 0.51–0.81 1.64e-04���

UC 105 66 0.60 0.45–0.80 5.32e-04���

a Analysis of the meta-cohort was corrected for potential batch effects by including the cohort (TCGA, GSE6891) as

an independent explanatory variable.

Significance levels:

� � 0.05;

�� �0.01;

��� � 0.001;

Abbreviations: HSC, hematopoietic stem cells; GMP, granulocytic-monocytic progenitors; MEP, megakaryocyte-

erythroid progenitors; UC, unclassified samples (assignment frequency of UC = 15%);

https://doi.org/10.1371/journal.pone.0229593.t003
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Table 4. Cox regression analysis of potential confounding variables conducted for the TCGA (N = 122), GSE6891 (N = 439), and meta-cohort (N = 561). Cohorts

were limited to samples with complete records for all explanatory variables investigated. Results are shown for the (A) univariate Cox regression analysis per explanatory

variable and (B) associated multivariate Cox regression analyses limited to confounding variables tested significant in univariate Cox regression analyses. Table columns

are as described in Table 3. Analyses were performed for overall survival.

A) Simple Cox Regression

TCGA cohort (N = 122) GSE6891 cohort (N = 439) AML meta-cohort (N = 561)

N Events HR 95% CI P N Events HR 95% CI P N Events HR 95% CI P

MAGS HSC 37 32 1 120 93 1 157 125 1

MEP 26 15 0.523 0.282–

0.971

0.040� 108 56 0.491 0.352–

0.685

2.75E-

05���
134 71 0.486 0.363–

0.650

1.26E-

06���

GMP 40 26 0.595 0.353–

1.005

0.052 147 89 0.632 0.472–

0.846

0.002�� 187 115 0.622 0.483–

0.802

2.50E-

04���

UC 19 9 0.309 0.146–

0.652

0.002�� 64 40 0.666 0.460–

0.965

0.032� 83 49 0.580 0.417–

0.807

0.001��

Cytogenetic

riska
GOOD 24 10 1 97 40 1 NA NA NA NA NA

INTER 60 42 2.636 1.319–

5.268

0.006�� 247 160 1.900 1.341–

2.690

3.02E-

04���
NA NA NA NA NA

POOR 35 27 2.828 1.362–

5.872

0.005�� 85 69 3.222 2.173–

4.778

5.84E-

09���
NA NA NA NA NA

UC 3 3 8.159 2.188–

30.431

0.002�� 10 9 3.801 1.839–

7.857

3.14E-

04���
NA NA NA NA NA

FABb M0 13 9 1 16 13 1 29 22 1

M1 28 21 1.773 0.805–

3.904

0.155 94 60 0.646 0.355–

1.177

0.153 122 81 0.772 0.481–

1.236

0.281

M2 27 17 1.156 0.520–

2.659

0.697 104 64 0.629 0.346–

1.142

0.128 131 81 0.698 0.435–

1.119

0.135

M3 6 3 0.542 0.146–

2.013

0.360 24 11 0.469 0.210–

1.048

0.065 30 14 0.492 0.251–

0.962

0.038�

M4 27 16 0.861 0.379–

1.955

0.720 79 48 0.635 0.344–

1.173

0.147 106 64 0.683 0.420–

1.108

0.123

M4E NA NA NA NA NA 5 2 0.325 0.073–

1.444

0.140 5 2 0.330 0.077–

1.403

0.133

M5 14 10 1.957 0.785–

4.879

0.150 103 72 0.780 0.432–

1.407

0.408 117 82 0.846 0.528–

1.356

0.488

M6 3 3 2.452 0.649–

9.272

0.186 6 3 0.415 0.118–

1.456

0.170 9 6 0.702 0.284–

1.731

0.442

M7 3 3 2.311 0.615–

8.679

0.215 0 0 NA NA NA 3 3 1.920 0.573–

6.429

0.290

UC 1 0 2.751 NA 0.996 8 5 0.869 0.310–

2.438

0.790 9 5 0.865 0.328–

2.286

0.771

CEBPA NEG 119 80 1 406 262 1 525 342 1

POS 3 2 1.184 0.289–

4.851

0.815 29 13 0.555 0.318–

0.968

0.038� 32 15 0.556 0.332–

0.933

0.026�

FLT3-ITD NEG 121 81 1 315 187 1 436 268 1

POS 1 1 5.724 0.766–

42.766

0.089 124 91 1.665 1.294–

2.141

7.18E-

05���
125 92 1.428 1.127–

1.811

0.003��

FLT3-TKD NEG 107 71 1 390 254 1 497 325 1

POS 15 11 1.478 0.778–

2.810

0.233 48 24 0.699 0.460–

1.062

0.093 63 35 0.820 0.579–

1.163

0.265

IDH1 NEG 116 78 1 405 256 1 521 334 1

POS 6 4 0.772 0.282–

2.114

0.614 31 19 0.901 0.565–

1.436

0.661 37 23 0.863 0.565–

1.316

0.493

IDH2 NEG 113 78 1 400 254 1 513 332 1

POS 9 4 0.509 0.186–

1.394

0.189 36 21 0.849 0.544–

1.324

0.470 45 25 0.765 0.509–

1.148

0.196

(Continued)
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Table 4. (Continued)

KRAS NEG 116 78 1 436 276 1 552 354 1

POS 6 4 0.669 0.244–

1.836

0.435 3 2 1.028 0.256–

4.132

0.970 9 6 1.031 0.460–

2.311

0.941

NMP1 NEG 109 73 1 303 198 1 412 271 1

POS 13 9 1.739 0.864–

3.501

0.121 136 80 0.874 0.674–

1.133

0.310 149 89 0.845 0.665–

1.074

0.169

NRAS NEG 115 77 1 396 253 1 511 330 1

POS 7 5 1.435 0.578–

3.563

0.436 42 25 0.826 0.548–

1.246

0.362 49 30 0.843 0.580–

1.225

0.370

WBC WBC 122 82 1.002 0.998–

1.006

0.402 NA NA NA NA NA NA NA NA NA NA

Age Age 122 82 1.041 1.022–

1.060

1.44E-

05���
439 278 1.015 1.005–

1.026

0.003�� 561 360 1.025 1.017–

1.033

2.64E-

09���

Cohort TCGA NA NA NA NA NA NA NA NA NA NA 122 82 1

GSE6891 NA NA NA NA NA NA NA NA NA NA 439 278 0.579 0.451–

0.744

1.99E-

05���

B) Multivariate Cox Regression

TCGA cohort (N = 122) GSE6891 cohort (N = 439) AML meta-cohort (N = 561)

N Events HR 95% CI P N Events HR 95% CI P N Events HR 95% CI P

MAGS HSC 37 32 1 120 93 1 157 125 1

MEP 26 15 0.781 0.404–

1.511

0.464 108 56 0.600 0.419–

0.862

0.006�� 134 71 0.524 0.374–

0.734

1.69E-

04���

GMP 40 26 0.780 0.445–

1.365

0.383 147 89 0.723 0.537–

0.973

0.032� 187 115 0.593 0.443–

0.793

4.32E-

04���

UC 19 9 0.467 0.213–

1.025

0.058� 64 40 0.742 0.508–

1.084

0.123 83 49 0.561 0.398–

0.791

9.55E-

04���

Cytogenetic

riska
GOOD 24 10 1 97 40 1 - - - - -

INTER 60 42 1.996 0.964–

4.129

0.063 247 160 1.529 1.045–

2.239

0.029 - - - - -

POOR 35 27 1.911 0.870–

4.195

0.107 85 69 2.751 1.825–

4.147

1.36E-

06���
- - - - -

UC 3 3 7.440 1.928–

28,712

0.004�� 10 9 3.036 1.445–

6.379

0.003�� - - - - -

FABb M0 - - - - - - - - - - 29 22 1

M1 - - - - - - - - - - 122 81 1.267 0.769–

2.087

0.353

M2 - - - - - - - - - - 131 81 1.266 0.766–

2.094

0.358

M3 - - - - - - - - - - 30 14 1.089 0.531–

2.233

0.816

M4 - - - - - - - - - - 106 64 1.143 0.684–

1.911

0.610

M4E - - - - - - - - - - 5 2 0.861 0.196–

3.790

0.844

M5 - - - - - - - - - - 117 82 1.595 0.934–

2.723

0.087

M6 - - - - - - - - - - 9 6 1.140 0.418–

3.112

0.798

M7 - - - - - - - - - - 3 3 2.006 0.573–

7.021

0.276

UC - - - - - - - - - - 9 5 1.186 0.442–

3.181

0.735

(Continued)
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Table 4. (Continued)

CEBPA NEG - - - - - 406 262 1 525 342 1

POS - - - - - 29 13 0.703 0.386–

1.283

0.251 32 15 0.759 0.433–

1.331

0.336

FLT3-ITD NEG - - - - - 315 187 1 436 268 1

POS - - - - - 124 91 1.621 1.230–

2.135

6.04E-

04���
125 92 1.542 1.193–

1.994

9.52E-

04���

Age Age 122 82 1.035 1.017–

1.054

1.71E-

04���
435 275 1.011 1.001–

1.022

0.036� 557 357 1.021 1.012–

1.030

4.56E-

06���

Cohort TCGA NA NA NA NA NA NA NA NA NA NA 122 82 1

GSE6891 NA NA NA NA NA NA NA NA NA NA 439 278 0.640 0.472–

0.869

0.005��

a Cytogenetic risk was excluded from Cox regression analyses conducted for the meta-cohort due to differences in cytogenetic risk group stratification between the

TCGA (stratification based on cytogenetic and molecular genetics) and GSE6891 (stratification based on cytogenetic abnormalities only) cohorts.
b Samples recorded as FAB-Mx (N = 1), FAB-RAEB (N = 4), and FAB-RAEBt (N = 13) were removed.

Significance levels:

� � 0.05;

�� �0.01;

��� � 0.001;

Abbreviations: N, total sample size; HR, hazards ratio; CI, confidence intervals; HSC, hematopoietic stem cells; MEP, megakaryocyte-erythroid progenitors; GMP,

granulocytic- monocytic progenitors; UC, unclassified; INTER, intermediate

https://doi.org/10.1371/journal.pone.0229593.t004

Table 5. Overview of enrichment patterns detected using gene set enrichment analysis (GSEA) in the reduced

assignment probability meta-cohort (N = 573: NGSE6891 = 423, NTCGA = 150), investigating the Hallmark, the

C2-CP, and the C3-TFT gene set collections retrieved from the MSigDB. GSEA analysis was conducted for three

comparisons: (A) HSC vs. Rest, (B) MEP vs. Rest, and (C) GMP vs. Rest. The total number of enriched gene sets

(Total) with p-value� 0.01 and FDR� 0.25, and the numbers of enriched gene sets detected per group within each

comparison are presented.

A) HSC vs. Rest
MSigDB collection Total Enriched in HSC (%) Enriched in Rest (%)

Hallmark 31 10 (32.3) 21 (67.7)

C2-CP 256 30 (11.7) 226 (88.3)

C3-TFT 222 173 (77.9) 49 (22.1)

B) MEP vs. Rest
MSigDB collection Total Enriched in GMP (%) Enriched in Rest (%)

Hallmark 25 11 (44.0) 14 (56.0)

C2-CP 360 59 (16.4) 301 (83.6)

C3-TFT 101 32 (31.7) 69 (68.3)

C) GMP vs. Rest
MsigDB collection Total Enriched in MEP (%) Enriched in Rest (%)

Hallmark 21 20 (95.2) 1 (4.8)

C2-CP 254 252 (99.2) 301 (0.8)

C3-TFT 22 9 (40.9) 69 (59.1)

Abbreviations: HSC, hematopoietic stem cells; MEP, megakaryocyte-erythroid progenitors; GMP, granulocytic-

monocytic progenitors; UC, unclassified; MSigDB, Molecular Signature Database

https://doi.org/10.1371/journal.pone.0229593.t005
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Fig), whereas the MEP subtype had a high cell-cycle activity signature with impaired innate

immune activity (S7C Table, S3C Fig). Moreover, the MEP subtype was enriched for genes

involved in the metabolism of heme- and erythroblast differentiation, which were downregu-

lated in the GMP subtype, further supporting our hypothesis that malignant cells possess tran-

scriptional reminiscence of the COO.

Annotation of genetic mutation patterns

Potential associations between the MAGS subtypes and well-documented mutations in seven

AML-associated oncogenes recorded for both the TCGA and the GSE6891 cohort (CEBPA,

FLT3 [including both the FLT3-itd and FLT3-tkd aberrations], IDH1, IDH2, KRAS, NPM1,

and NRAS) were investigated in the meta-cohort. Two genes, CEBPA and IDH2, showed sub-

type-specific mutation patterns. Mutations occurring in the CEBPA gene were associated with

the MEP subtype (p = 5.79e-08), which was observed especially for the CEBPA double muta-

tion. Mutations detected in the IDH2 gene were more frequently observed in the HSC subtype

(p = 0.015; S8A Table). Furthermore, a set of 112 genes previously shown to harbour AML

driver mutations were investigated for MAGS subtype-specific mutation patterns in the

reduced TCGA cohort (N = 130). Mutations were detected in 68 genes, revealing significant

subtype-specific mutation patterns for RUNX1, RUNX1T1, TP53, and WT1. RUNX1 muta-

tions were associated with the HSC subtype (p = 0.005), while mutations detected in the WT1
gene were associated with the GMP subtype (p = 0.031). Mutations detected in the TP53 gene

were negatively correlated with the GMP subtype, and mutations in RUNX1T1 were associated

with the UC samples (p = 0.02; S8B Table).

Discussion

In AML, GEPs have successfully identified molecular cancer subtypes for stratifying patients

into responders vs. non-responders and predicting survival. [19,44–49] These molecular classi-

fication systems are generally based on the GEPs of leukaemic cells or on well-documented

oncogenic driver mutations and cytogenetic aberrations associated with AML oncogenesis.

[16,21,40–45] Here, we examined and validated a classification system using the GEPs of nor-

mal myeloid progenitor cell compartments to classify AML into subtypes based on transcrip-

tional reminiscence of the COO. We showed that the MAGS subtypes of AML cases are

associated with prognosis. This observation supports the idea that one or more MAGS sub-

types have pathogenic impact. The conclusions may be important for future diagnostic pheno-

typing and the implementation of individual precision therapy, although there are conceptual,

molecular, statistical, and clinical considerations that need to be discussed before clinical

implementation and validation.

Our concept is that AML heterogeneity is a consequence of deregulated differentiation and

that there is transcriptional reminiscence of the COO. Combining MFC, FACS, and GEP

methodologies to phenotype the myeloid progenitor cells in normal bone marrow samples

enabled the development of MAGS that differentiate between early (HSC) and late (GMP,

MEP) progenitors by tracing transcriptional reminiscence expression patterns of the COO in

end-stage AML samples. The MAGS classification assigned comparable subtype frequencies to

AML samples within and across independent clinical cohorts. In a meta-analysis of 691 adult

patients with de novo AML, we demonstrated a significant prognostic association with post-

therapy outcome. Moreover, multivariate Cox proportional hazards analyses in the two clinical

cohorts as well as in the meta-cohort supported that MAGS subtyping is independent of FAB

subtype, cytogenetic risk score (not investigated in the meta-cohort due to different risk score

stratifications across cohorts), and molecular genetics (well-documented driver mutations in
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CEBPA, FLT3 [including both FLT3-itd and the FLT3-tkd aberrations], IDH1, IDH2, KRAS,

NPM1, and NRAS). These results suggest that we have identified distinct pathogenic mecha-

nisms that require further investigation.

The prognostic impact of MAGS-assigned subtypes conferred a superior prognosis to the

lineage-committed GMP and MEP subtypes compared with the undifferentiated HSC subtype.

The adverse association between leukaemic stem cell phenotypes and survival is well docu-

mented in primary AML. [50,51] In agreement with our findings, those studies demonstrated

that leukaemic stem cell signatures were independent prognostic predictors that were associ-

ated with adverse clinical outcome.

The molecular characterisation of MAGS subtype-specific mutation patterns revealed

that RUNX1 and IDH2 mutations had non-random associations with the HSC subtype and

that there was a tendency for the DNMT3A mutation to be overrepresented in this subtype.

Thus, the HSC subtype is associated with well-documented driver mutations in key haema-

topoietic and epigenetic regulators involved in AML initiation. [25,52,53] In normal hae-

matopoiesis, RUNX1 plays a critical role in HSC compartment maintenance, proliferation,

and haematopoietic differentiation, while in malignancy, genetic aberrations in RUNX1

have been associated with highly aggressive AML and poor prognosis. [43,54–57] In con-

trast, IDH2 and DNMT3A are key epigenetic regulators, and pre-leukaemic driver muta-

tions in these genes occur early in AML development and are associated with the pre-

leukaemic HSC compartment. [2,17,52,58] The significant enrichment of stem cell-specific

mutations in AML samples with the HSC subtype indicates a consensus between the tran-

scriptional COO detected by MAGS and the genetic COO, suggesting that AML transfor-

mation is not accompanied by subsequent differentiation in the HSC subtype or that HSC-

like transcriptional gene signatures were reactivated after AML transformation in more

differentiated cells. Similarly, CEBPA mutations were overrepresented in the MEP subtype.

CEBPA is a myeloid transcription factor involved in the balance between cell proliferation

and terminal differentiation, especially granulocyte differentiation. Loss of CEBPA func-

tion in AML contributes to leukaemogenesis by blocking granulocytic differentiation,

which is accompanied by the increased accumulation of earlier stem and myeloid progeni-

tors as well as erythroid and megakaryocytic progenitors. [59–62] According to the WHO

classification and the current ELN guidelines, patients with mutated CEBPA, particularly

those with biallelic mutated CEBPA, represent a cohort with favourable prognosis, [54]

which is in general accordance with current findings of superior prognosis in the MEP sub-

type. However, MAGS-based survival curves revealed smaller differences between subtypes

than previously reported findings. [63] Although a positive association between MEP and

CEBPA aberrations was observed, this is of associative and not definitive nature, as only 24

out of 147 MEP classified cases showed CEBPA mutations and recorded both contain

mono and biallelic CEBPA mutations, possibly contributing to a lower overall survival

range than previously reported. [63]

Functional annotation revealed that genes involved in cell-cycle activity and metabolic pro-

cesses were downregulated in the HSC subtype. This suggests slower cell proliferation or even

a prolonged quiescence phase compared with the GMP or MEP subtype. The poor prognosis

of the HSC subtype, thus, might reflect the inefficacy of antiproliferative chemotherapeutics,

such as cytarabine, in eradicating slow or non-proliferating leukaemic cells. [64,65] Hence,

reactivation of cell-cycle activity might be a critical step to re-establish chemotherapy sensitiv-

ity, as previously demonstrated in xenograft AML models. [66,67] In addition, the GMP sub-

type was characterised by enhanced innate immune activity, especially through Toll-like

receptor (TLR) signaling, which was impaired in the MEP subtype. Enhanced expression of

TLRs has been associated with haematopoietic malignancies, [68–71] including AML,
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[68,72,73] but their role in pathogenesis remains unclear. Nevertheless, enhanced TLR signal-

ing could activate inflammatory cytokine secretion and downstream effectors, which might

explain the observed upregulation of IL-6 JAK-STAT3 signaling and coregulation of TNF-α
signaling through NF-κB and IFN-γ signaling in the GMP subtype. Accordingly, inhibition of

TLRs or downstream effectors may confer therapeutic benefit in the GMP subtype but not

necessarily in the MEP or HSC subtype, as described previously. [68,74]

Statistical models used restricted multinomial regression to estimate the MAGS assign-

ment probability for each sample. MAGS subtypes were defined a priori based on FACS and

were independent of the GEP used to build the classifier and subsequent MAGS assignment

in clinical samples. Furthermore, samples with low assignment probabilities were labelled

UC. The frequency of UC samples in other gene expression-based COO classifications is

approximately 15%. [4,75] The probability cut-offs observed for MAGS assignment in the

clinical cohorts, when allowing for the assignment of 15% of the samples as UC, exceeded

0.70, which is well above the random assignment probability of one out of four. Further-

more, the prognostic robustness of MAGS was successfully validated for a wide range of

assignment frequency cut-offs for the UC subtype (S4A–S4C Fig). The prediction accuracy

of the MAGS classification was rather low at 78.95%, but defining 15% of the samples with a

low assignment probability as UC improved the prediction accuracy to 90.63%. Incorrect

subtype prediction was restricted to the HSC subtype, especially to the GSE19429 cohort, for

which FACS information was limited. The findings, thus, may be associated with differences

in the FACS procedures and poorly defined progenitor populations. This is further sup-

ported by recent findings indicating that FACS surface markers are limited in their capacity

to fully capture the differentiation stage of haematopoietic progenitor cells. [76] As the pre-

diction accuracy of the MAGS classification is highly dependent on the number and quality

of normal myeloid reference populations, it may be improved by increasing the sample size

of the training cohort, avoiding interlaboratory batch effects, and optimising the isolation

and characterisation of normal haematopoietic cell compartments for a priori subtype

assignments.

Clinical considerations: Overall, patient survival was associated with the MAGS-assigned

AML progenitor subtypes, independent of age, FAB subtype, and cytogenetic risk scores.

These findings support the idea that initial hits in oncogenesis occur in the stem and pro-

genitor cell compartments. MAGS subtype-specific mutation patterns of well-documented

driver mutations also support the potential clinical impact of MAGS subtyping. Combina-

tion chemotherapy still forms the backbone of AML treatments; however, patients with

relapsed or refractory diseases have an unmet need for predictive tests and precise compan-

ion diagnostics. This need may be fulfilled using MAGS subtyping with predictive informa-

tion to guide targeted therapy. In agreement with previous work of our group, [4,8] the

current analyses indicate that such information is available at diagnosis and could be used

for the identification of candidates needing more precise strategies. We believe our results

support the future inclusion of gene expression profiling in randomised prospective clinical

trials aimed at improving AML treatment.

In summary, we have developed and documented a novel classification system that associ-

ates normal myeloid progenitor subsets with AML subtypes and prognosis. The MAGS sub-

types have different clinical courses, drug resistance mechanisms, and molecular pathogenesis.

However, further studies are needed to examine subtype-specific therapeutic strategies. Inter-

estingly, the results imply a consensus between the genetic and transcriptional COOs, suggest-

ing a minor impact of cell plasticity in leukaemic end stage cells. Future prospective studies

will be needed to prove this concept using clinical endpoints.
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