380 research outputs found
The Geometrical Structure of Disordered Sphere Packings
The three dimensional structure of large packings of monosized spheres with
volume fractions ranging between 0.58 and 0.64 has been studied with X-ray
Computed Tomography. We search for signatures of organization, we classify
local arrangements and we explore the effects of local geometrical constrains
on the global packing. This study is the largest and the most accurate
empirical analysis of disordered packings at the grain-scale to date with over
140,000 sphere coordinates mapped. We discuss topological and geometrical ways
to characterize and classify these systems, and discuss implications that local
geometry can have on the mechanisms of formation of these amorphous structures.Comment: 15 pages; 16 figure
Local and Global relations between the number of contacts and density in monodisperse sphere packs
The topological structure resulting from the network of contacts between
grains (\emph{contact network}) is studied for large samples of monosized
spheres with densities (fraction of volume occupied by the spheres) ranging
from 0.59 to 0.64. We retrieve the coordinates of each bead in the pack and we
calculate the average coordination number by using three different methods. We
show that, in the range of density investigated, the coordination number is
larger than 4 and it increases with the packing fraction. At local level we
also observe a positive correlation between local packing fraction and number
of neighbors. We discover a dependence between the local densities of
configurations with few neighbors in contact and the global sample-denities.
This might indicate that local configurations with small number of neighbors
are able to deform plastically when the sample is compactifying.
PACS: 45.70.-n, Granular Systems; 45.70.Cc, Static sandpiles; Granular
Compaction.Comment: 10 pages, 6 figure
Effects of Synaptic and Myelin Plasticity on Learning in a Network of Kuramoto Phase Oscillators
Models of learning typically focus on synaptic plasticity. However, learning
is the result of both synaptic and myelin plasticity. Specifically, synaptic
changes often co-occur and interact with myelin changes, leading to complex
dynamic interactions between these processes. Here, we investigate the
implications of these interactions for the coupling behavior of a system of
Kuramoto oscillators. To that end, we construct a fully connected,
one-dimensional ring network of phase oscillators whose coupling strength
(reflecting synaptic strength) as well as conduction velocity (reflecting
myelination) are each regulated by a Hebbian learning rule. We evaluate the
behavior of the system in terms of structural (pairwise connection strength and
conduction velocity) and functional connectivity (local and global
synchronization behavior). We find that for conditions in which a system
limited to synaptic plasticity develops two distinct clusters both structurally
and functionally, additional adaptive myelination allows for functional
communication across these structural clusters. Hence, dynamic conduction
velocity permits the functional integration of structurally segregated
clusters. Our results confirm that network states following learning may be
different when myelin plasticity is considered in addition to synaptic
plasticity, pointing towards the relevance of integrating both factors in
computational models of learning.Comment: 39 pages, 15 figures This work is submitted in Chaos: An
Interdisciplinary Journal of Nonlinear Scienc
Extracting Structural Information of a Heteropolymer from Force-Extension Curves
We present a theory for the reverse analysis on the sequence information of a
single H/P two-letter random hetero-polymer (RHP) from its force-extension(f-z)
curves during quasi static stretching. Upon stretching of a self-assembled RHP,
it undergoes several structural transitions. The typical elastic response of a
hetero-polymeric globule is a set of overlapping saw-tooth patterns. With
consideration of the height and the position of the overlapping saw-tooth
shape, we analyze the possibility of extracting the binding energies of the
internal domains and the corresponding block sizes of the contributing
conformations.Comment: 5 figures 7 page
Minkowski Tensors of Anisotropic Spatial Structure
This article describes the theoretical foundation of and explicit algorithms
for a novel approach to morphology and anisotropy analysis of complex spatial
structure using tensor-valued Minkowski functionals, the so-called Minkowski
tensors. Minkowski tensors are generalisations of the well-known scalar
Minkowski functionals and are explicitly sensitive to anisotropic aspects of
morphology, relevant for example for elastic moduli or permeability of
microstructured materials. Here we derive explicit linear-time algorithms to
compute these tensorial measures for three-dimensional shapes. These apply to
representations of any object that can be represented by a triangulation of its
bounding surface; their application is illustrated for the polyhedral Voronoi
cellular complexes of jammed sphere configurations, and for triangulations of a
biopolymer fibre network obtained by confocal microscopy. The article further
bridges the substantial notational and conceptual gap between the different but
equivalent approaches to scalar or tensorial Minkowski functionals in
mathematics and in physics, hence making the mathematical measure theoretic
method more readily accessible for future application in the physical sciences
Telling stories about European Union Health Law: The emergence of a new field of law
The ideational narrative power of law has now solidified, and continues to solidify, ‘European Union health law’, into an entity with a distinctive legal identity. EU health law was previously seen as either non-existent, or so broad as to be meaningless, or as existing only in relations between EU law and health (the ‘and’ approach), or as consisting of a body of barely or loosely connected policy domains (the ‘patchwork’ approach). The process of bringing EU health law into being is a process of narration. The ways in which EU health law is narrated (and continues to be narrated) involve three main groups of actors: the legislature, courts and the academy
- …
