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ABSTRACT

Models of learning typically focus on synaptic plasticity. However, learning is the result of both synaptic and myelin plasticity. Speci�cally,
synaptic changes often co-occur and interact with myelin changes, leading to complex dynamic interactions between these processes. Here,
we investigate the implications of these interactions for the coupling behavior of a system of Kuramoto oscillators. To that end, we con-
struct a fully connected, one-dimensional ring network of phase oscillators whose coupling strength (re�ecting synaptic strength) as well
as conduction velocity (re�ecting myelination) are each regulated by a Hebbian learning rule. We evaluate the behavior of the system in
terms of structural (pairwise connection strength and conduction velocity) and functional connectivity (local and global synchronization
behavior). We �nd that adaptive myelination is able to both functionally decouple structurally connected oscillators as well as to func-
tionally couple structurally disconnected oscillators. With regard to the latter, we �nd that for conditions in which a system limited to
synaptic plasticity develops two distinct clusters both structurally and functionally, additional adaptive myelination allows for functional
communication across these structural clusters. These results con�rm that network states following learning may be di�erent when myelin
plasticity is considered in addition to synaptic plasticity, pointing toward the relevance of integrating both factors in computational models of
learning.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5092786

Synaptic and myelin plasticity are two crucial mechanisms
underlying learning in the brain. Synaptic plasticity, which
refers to activity-dependent changes of synaptic coupling, has
been modeled intensely in recent decades. However, myelin
plasticity, which refers to activity-dependent changes in the
structure and thickness of myelin sheaths, has been largely
absent fromcomputationalmodels of learning.These twoplas-
ticitymechanisms are likely to exhibit complex interactions. In
this work, we suggest a simple mathematical framework as a
�rst attempt to understand these interactions. Our results may
pave the way for the development of new models of learning
incorporating both synaptic and myelin plasticity.

I. INTRODUCTION

Synchronization, the mutual adjustment of rhythms among
interacting oscillators,1,2 is a ubiquitous phenomenon in physics,
biology, and neuroscience.3–6 In the latter, this phenomenon has
been linked to various cognitive functions including perception,7–9

attention,10–14 and learning.15–25 Learning involves the dynamic
adjustment of connections among neuronal populations in the
form of synaptic plasticity.26 Mutual interactions between synap-
tic plasticity and synchronization have been of particular inter-
est in neuroscience.19–25,27–30 However, synaptic plasticity is not the
only factor being a�ected by as well as a�ecting synchronized
activity in oscillating neuronal populations. Myelination is also
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activity-dependent,31–38 and since it in�uences the conduction veloc-
ity of neuronal signals, it is an additional dynamic factor poten-
tially a�ecting synchronization behavior. Myelination is integral to
the unimpaired functioning of the brain as it ensures that signals
originating from presynaptic sources at various locations neverthe-
less arrive within a short succession of each other at a postsynaptic
target.39 The e�ect of myelination on signal transduction is quite
profoundwith even slight changes in its thickness possessing the abil-
ity to bring about signi�cant di�erences in the number of signals
received by a speci�c neuron within a given time interval.39,40 This,
in turn, might strongly a�ect local and global synchrony among neu-
ral groups. Therefore, it might be bene�cial for the brain to dispose
of the ability to dynamically adjust signal conduction among remote
areas depending on the frequencywithwhich they interact (engage in
functional connectivity). Indeed, abundant biological evidence sup-
ports the idea of continued adaptive changes inmyelination through-
out the whole lifespan.33,34,36,41–43 The fact that adaptive myelination
constitutes a second dynamic factor in addition to synaptic plasticity,
both of which depend on the temporal statistics of neural activa-
tions in pre- and postsynaptic neuronal populations,39 inspired us
to systematically investigate their interactions in a system of weakly
coupled oscillators. We employ a neural mass model to capture the
phase evolution of weakly coupled neural groups as their connec-
tions undergo activity-dependent changes in coupling strength and
conduction velocity.

Speci�cally, we consider a system of Kuramoto oscillators44with
distance-dependent delays previously established to study the e�ect
of synaptic plasticity.23 We extend this model by dynamically adjust-
ing conduction velocity (and hence transmission delays) in addition
to synaptic weights. Changes in both synaptic weight and conduc-
tion depend on a Hebbian learning rule,26 which is based on the
frequency of the coactivations among pairs of network oscillators.
That is, both connection weights and conduction velocity are time-
dependent parameters in�uencing each other and the dynamics of
the network as a whole.

II. MATERIALS AND METHODS

A. Weakly coupled oscillator model

In line with previous work,23 our network model consists of an
ensemble of N phase oscillators arranged along a circle, i.e., a one-
dimensional array with periodic boundary conditions. The network
is fully connected with the exact coupling strengths between oscil-
lators given by the real-valued directed connectivity matrix K. Local
dynamics of each phase oscillator are governed by a Kuramotomodel
with transmission delays,















ϕ̇i(t) = ωi +
1

N

N
∑

j=1

Kij(t) sin(ϕj(t − τij)− ϕi(t)), τij =
dij

v
,

ϕ̇i(t)=ωi +
1

N

N
∑

j=1

Kij(t) sin(ϕj(t− τij(t))−ϕi(t)), τij(t)=
dij

vij(t)
,

(1)

where ϕi(t) ∈ [0, 2π) denotes the phase of oscillator i (i = 1, . . . , N)
at time t, ωi is its intrinsic frequency, and Kij re�ects the strength of
the connection from the jth to the ith oscillator. The transmission
delay from j to i is static (τij) if conduction velocity is constant (v),

or time-dependent (τij(t)) if conduction velocity is dynamic [vij(t),
see Eq. (4)]. Finally, dij is the distance between two oscillators. Due
to periodic boundary conditions, this distance can be de�ned as

dij =
L

N
min(|i − j|,N − |i − j|), (2)

with L controlling the circumference of the circle. For the case of
static delays, we de�ne a coupling delay constant T = L

v
as the time

needed for signals traveling at a velocity v to revolve once around the
circle.23

The coupling strength Kij between oscillators i and j varies
dynamically according to a form of Hebbian learning where the
growth or decay of coupling strengths depend on the phase o�set
between oscillators,45,46











K̇ij(t) = εs [αs cos(ϕi(t)− ϕj(t − τij))− Kij(t)], τij =
dij

v
,

K̇ij(t) = εs [αs cos(ϕi(t)−ϕj(t− τij(t)))−Kij(t)], τij(t) =
dij

vij(t)
.

(3)

In Eq. (3), εs and αs control the learning rate and learning
enhancement factor of the coupling strength, respectively. The learn-
ing enhancement factor αs determines the maximum and minimum
coupling strength22 and ensures that these remain su�ciently weak.

For the case in which conduction velocities between pairs of
oscillators vary dynamically, conduction velocity is no longer identi-
cal for all pairs of oscillators but varies according to a secondHebbian
learning process,

v̇ij(t) = εv [αv cos(ϕi(t)− ϕj(t − τij(t)))− vij(t)]. (4)

Here, εv and αv are the learning rate and learning enhancement
factor of the conduction velocity, respectively. Note that conduction
velocity was bounded from below because vij(t)may otherwise grow
too small leading to delays approaching in�nity. We chose to bound
vij(t) at a value of 0.1 as this corresponds to T = 10 in the static case
if all pairwise conduction velocities decay to this value.

B. Quantitative analyses

1. Global synchronization behavior

In a network of globally coupled oscillators arranged along a
ring with distance-dependent delays, the distribution of phases may
show propagating structures, static phase increments from one oscil-
lator to the next, referred to as coherent-wave modes.23,47 Phase
o�sets with respect to a reference oscillator (e.g., the �rst)may exhibit
periodicity at integer (or half-integer, see below)multiples of 2π . Fre-
quency synchronization, identical frequencies but distributed phases,
in such a system can thus be characterized in terms of these multi-
ples of 2π , which are referred to as coherent-wave modes (denoted
by m). However, for the system employed here, identi�cation of
coherent-wave mode values is complicated by the fact that either
a single or two clusters of synchronized oscillators may form. We
refer to the formation of a single cluster as single-cluster synchro-
nization and to the formation of two (anti-phase) clusters as double-
cluster synchronization. To overcome this problem, we measure
both in-phase synchronization (r1) and anti-phase synchronization
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(r2). In-phase synchronization is characterized by the generalized
order parameter (r1),44,48

r1e
iψ(t) =

1

N

N
∑

j=1

e
iϕ∗
j (t), (5)

where ψ(t) is the mean phase at time t44 and ϕ∗
j is the phase of oscil-

lator j corrected for phase increments around the ring determined by
the value of the modem49

ϕ∗
j (t) = ϕj(t)± 2πm(j − 1)/N. (6)

Anti-phase synchronization is given by22,23

r2 = |r′ − r1|,

where

r′eiψ
′(t) =

1

N

N
∑

j=1

e
2iϕ∗

j (t). (7)

The term r′ measures the in-phase and anti-phase synchroniza-
tion by stretching the range from zero to π around the full circle.
Hence, this measure needs to be adjusted for in-phase synchro-
nization to obtain a measure of anti-phase synchronization (r2). In
accordance with previous work,23 we used a threshold on r2 to deter-
mine the presence of a second cluster (here r2 ≥ 0.15). This implies
that a second (smaller) cluster may exist even though r1 > r2.

To determine the mode of the system and whether it exhibits
single- or double-cluster synchronization in any particular simu-
lation, we compute both r1 and r2 for a range of candidate mode
values (m ∈ {0, 0.5, 1, 1.5, 2}) and select themode thatmaximizes the
global phase-coherence [max(r1, r2)]. Please note that for double-
cluster synchronization, m may take on half-integer values.23 This
procedure, while able to detect double-clustered states when clusters
are of unequal size, can only do so if the phase o�set between clus-
ters equals π . This does not imply that two clusters may not exhibit
smaller phase o�sets.

2. Pairwise connectivity

In addition to the global synchronization behavior of the system,
we also examine its local (i.e., pairwise) structural and functional
connectivity. Structural connectivity is straightforwardly given by the
coupling strength matrix K ranging from −αs to αs. To measure
functional connectivity, we introduce a coherence matrix D whose
elements are given by

Dij =
1

1t

tr+ 1t
∫

tr

cos(ϕi(t)− ϕj(t)) dt. (8)

Here, tr marks a time-point after which the system no longer
experiences major changes in coupling strength and/or conduction
velocity.Dij ranges from−1 to 1 with a value of 1 indicating that two
nodes are in phase (over a time interval 1t) whereas a value of −1
indicates that two nodes are in anti-phase.

3. Numerical simulations

We analyze the system in terms of its global synchronization
behavior as well as in terms of pairwise structural and functional

TABLE I. Network parameters.

Network parameter Value

N 100
L 1

connectivity for three di�erent cases: (I) dynamic coupling strength
and static conduction velocity (cf. Ref. 23); (II) static coupling
strength and dynamic conduction velocity; and (III) dynamic cou-
pling strength and dynamic conduction velocity. For the �rst sce-
nario, the system is evaluated for a range of combinations of param-
eters εs and T. For the latter two scenarios, εs is �xed at either 0
(no learning, scenario II) or 0.1 (fast learning, scenario III), and
the behavior is observed while the parameters εv and αv are var-
ied. The long-term behavior of the system is characterized by its
coherent-wave mode of synchronization and its cluster-formation.
For notational convenience, we denote each �nal state {m,c}, where
m indicates the (half-)integer value of the coherent-wave mode
and c indicates whether the network exhibits single (s) or double
(d) cluster synchronization. For example, the state {1,d} describes
a system exhibiting double-cluster synchronization and a mode
of 1.

For all simulations, intrinsic frequencies ωi are drawn from a
normal distribution ℵ(1, 0.01) and initial phases are drawn from a
uniform distribution in the range [0, 2π). All simulations start from
a network with coupling strengths �xed at their maximum value
(αs = 1), which exceeds the critical coupling strength and supports
interactions among oscillators. Furthermore, for those simulations
for which velocity changes dynamically, conduction velocities are ini-
tialized as vij(t = 0) = 0.14, whichmeans that initial coupling delays
correspond to the scenario where the delay constant (T) is ∼7 for a
ring length of L = 1. Parameters characterizing the network are sum-
marized in Table I, while those characterizing the three simulated
scenarios are summarized in Table II.

The model is implemented in MATLAB (R2016a) and inte-
grated for 20 000 time steps using the forward Euler method with
a step size dt = 0.01 in arbitrary units of time. To accommodate for
delays, we always �rst simulate 1000 time steps during which oscil-
lators are noninteracting. Subsequently, the time delay interaction is
switched on to simulate the 19 000 time steps of interest.

TABLE II. Simulation parameters.

Scenario Parameter Value

Dynamic coupling strengths, static
conduction velocities

αs 1
εv 0
αv 0

Static coupling strengths, dynamic
conduction velocities

εs 0
αs 1

Dynamic coupling strengths and
conduction velocities

εs 0.1
αs 1
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We perform 50 simulations with di�erent randomizations of
initial conditions for each parameter combination in every scenario.
We select the most frequently observed combination of coherent-
wave mode of synchronization and cluster-formation (single vs dou-
ble) as the characteristic �nal state of a given parameter combination.
Whenever the characteristic state is observed in less than 70% of
the simulations, we additionally identify a secondary state as the
one occurring for at least 50% of the remaining simulations (i.e.,
of those not classi�ed as the characteristic state). In this case, we
regard the system as bistable. If no secondary state can be unambigu-
ously identi�ed and individual simulations yield di�erent states, we
regard the system as multistable. This procedure assumes that states
are discernible for individual simulations; that is, they are indeed
characterizable in terms of a unique combination of coherent-wave

mode of synchronization and cluster-formation. This assumption
may be violated if the system remains incoherent or by the formation
of chimera-like states, i.e., di�erent subsets of oscillators exhibit dis-
tinct dynamical behaviors.50–54 In this case, we regard the system as
erratic.

III. RESULTS

A. Scenario I: Dynamic coupling strengths,

static conduction velocities

We �rst examined learning in the context of static conduction
velocity. For this purpose, we explored a parameter space de�ned by
the delay constantT and the learning rate εs. Most parameter settings

FIG. 1. Arrangement of phase offsets with respect to the first oscillator when the coupling strength is dynamic and the conduction velocity is static. Panel (a) shows the
color-coded state (coherent-wave mode of synchronization and cluster-formation) for each point in the parameter space defined by T and εs. Colors indicate the characteristic
states. Furthermore, colored disks indicate secondary states (bistability). A white disk indicates multistability. Panel (b) shows absolute phase offsets between every oscillator
and the first (|1ϕ1,i |) for the state {0,s}. All offsets are close to zero. Panel (c) shows |1ϕ1,i | for the state {0,d}. Phase offsets are close to zero for oscillators falling into
the same cluster as the first and close to π (half period) for those falling into the opposite cluster. Panel (d) shows |1ϕ1,i | for the state {0.5,d}. Phase offsets exhibit one
half-cycle, i.e., oscillators falling into the same cluster as the first increases with distance, whereas those in the opposite cluster decrease with distance. Panel (e) shows
|1ϕ1,i | for the state {1,d}. Phase offsets exhibit one full cycle with offsets for oscillators falling into the same cluster as the first mirroring those of oscillators in the opposite
cluster. Panel (f) shows |1ϕ1,i | for the state {1.5,d}. Phase offsets exhibit one and a half cycles with offsets for oscillators falling into the same cluster as the first mirroring
those of oscillators in the opposite cluster. Panel (g) shows |1ϕ1,i | for the state {1,s}. Phase offsets exhibit one full cycle. Panel (h) shows |1ϕ1,i | for the state {2,s}. Phase
offsets exhibit two full cycles passed by a single cluster. All phase offsets are averaged over the last 100 time steps. Phase offsets for each parameter combination are shown
in Fig. S1(b) in the supplementary material.
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FIG. 2. Pairwise structural connectivity emerging in the context of dynamic coupling and static conduction. Panel (a) shows the color-coded state of coherent-wave mode
of synchronization and cluster-formation observed at each point in the parameter space defined by T and εs. As in Fig. 1, the secondary state (bistability) is marked with
colored disks, whereas white indicates multistability. Panel (b) shows the structural connectivity matrix of the network for the state {0,s}. The network largely preserves the
initial connectivity pattern. Panel (c) shows structural connectivity of the network for the state {0,d}. Pairwise connection weights are close to +αs and −αs for oscillator
pairs belonging to the same or distinct clusters, respectively. Panels (d)–(f) show structural connectivity matrices of the network for the state {0.5,d} (d), state {1,d} (e),
state {1.5,d} (f). As before, coupling weights have approached +αs for within cluster connections and −αs for between cluster connections. However, based on the mode
synchronization, 1, 2, and 3 stripes of near-zero connection weights have formed in panels (d), (e), and (f), respectively. Panel (g) shows the structural connectivity matrix of
the network for the state {1,s}. All possible phase offsets ((n − 1)(2π/N)) with respect to the first oscillator can be observed. Panel (h) shows the structural connectivity
matrix for a network given the state {2,s}. The same observations as for panel (g) can be made, with the difference that phase differences are repeated. The structural
connectivity matrices are averaged over the last 100 time steps of the simulation. Structural connectivity matrices for each parameter combination are shown in Fig. S1(c)
in the supplementary material.

yield highly consistent results. However, some regions of parame-
ter space exhibit diverse results. This is especially prevalent at bor-
ders between adjacent regions and likely re�ects transitions in mode
synchronization, cluster-formation, or both. At borders, the system
may be multistable and the state observed for any given simulation
depends on initial conditions. The two parameters a�ect the behav-
ior of the system in di�erent, albeit interacting, ways. The learning
rate mainly a�ects cluster-formation, with slow learning leading to

the emergence of a single cluster while fast learning leads to the for-
mation of two clusters [see Fig. 1(a)]. In the former case, changes
in coupling strength between pairs of oscillators occur at a slower
rate than synchronization. That is, the system synchronizes before
large initial phase o�sets can decrease coupling. In the latter case,
changes in coupling strength between pairs of oscillators occur at a
faster rate than synchronization. That is, initially large phase o�sets
between pairs of oscillators quickly drive their coupling strength to
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FIG. 3. Pairwise functional connectivity among oscillators emerging when the coupling strength is dynamic and the conduction is static. Panel (a) shows the color-coded state
of coherent-wave mode of synchronization and cluster-formation observed at each point in the parameter space defined by T and εs. Color coding is the same as in Fig. 1.
Panel (b) shows the functional connectivity matrix of the network for the state {0,s}. The globally correlated functional connectivity matrix resembles the structural connectivity
matrix. Panel (c) shows the functional connectivity matrix of a network for the state {0,d}. Panels (d)–(f) show functional connectivity matrices of networks for the state {1.5,d}
(d), state {1,d} (e), state {1.5,d} (f). The functional pairwise correlations are associated with the cluster-formation of oscillators as they are 1 or close to 1 for intracluster
correlations and are−1 or close to−1 for between cluster correlations. Based on the mode of synchronization, 2, 4, and 6 stripes of zero or very weak correlations in panels
(d), (e), and (f) are formed, respectively. Panel (g) shows the functional connectivity matrix of a network for the state {1,s}. Pairwise functional connectivity values are 1 for the
neighboring oscillators and decrease to −1 as a function of distance. Panel (h) shows the functional connectivity matrix of the network for the state {2,s}. A similar pattern
as for panel (g) manifests, but reflecting two complete revolutions of phase offsets around the circle. The elements of correlation matrices were computed over the last 100
time steps of the simulation. Functional connectivity matrices for each parameter combination are shown in Fig. S1(d) in the supplementary material.

negative values, thus exacerbating their o�set until they are separated
by exactly π .

The delay constant interacts with the learning rate as increas-
ing delays allow for the formation of two clusters at progressively
lower learning rates.55 However, it mainly a�ects mode synchroniza-
tion with longer delays leading to larger m (see Fig. 1). Speci�cally,
for nonzero values, phases distribute around the circle such that the
o�set between each pair of neighboring oscillators is 2π

N
m (within a

cluster) or 2π
N
m + π (across clusters). Note that for the emergence

of two clusters, half-integer values can be obtained [Figs. 1(d)

and 1(f)]. This is in linewith previous observations23 that half-integer
values are the result of the two clusters interconnecting. Oscillator
pairs within a cluster “see” each other in phase when their phase
o�sets are matched by their delays. That is, due to delays, from
the perspective of each oscillator in a cluster, the other oscillators
within the same cluster appear in-phase, whereas to an external
observer, they may appear out of phase. For the emergence of a sin-
gle cluster, there is an exception to this observation for oscillator
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FIG. 4. Phase offsets with respect to the first oscillator when the coupling strength is static and the conduction is dynamic. Panel (a) shows the color-coded state of coheren-
t-wave mode of synchronization and cluster-formation observed at each point in the parameter space defined by εv and αv . Color coding is the same as in Fig. 1. The entire
parameter space is primarily characterized by the state {1,s}. However, a wide region of parameter space exhibits a secondary state defined by a mode of 2 and the formation
of two clusters. Panel (b) shows |1ϕ1,i | for the state {1,s}. Phase offsets exhibit one full cycle. Panel (c) shows |1ϕ1,i | for the state {2,s}. Phase offsets exhibit two full
cycles. Panel (d) shows |1ϕ1,i | for the state {2,d}. Phase offsets are largely pushed to either 0 or π , depending on the cluster affiliation. All phase offsets are averaged over
the last 100 time steps. Phase offsets for each parameter combination are shown in Fig. S2(b) in the supplementary material.

pairs with a phase o�set around π

2
. For these values, the trailing

oscillator sees the leading oscillator in phase. However, the lead-
ing oscillator sees the trailing one in anti-phase. This asymmetry
a�ects the coupling strength such that the structural connection from
the leading to the trailing oscillator is positive while that from the
trailing to the leading is negative. The magnitude of their coupling
strength is otherwise equal. This leads to one or two stripes of nega-
tive values in the structural connectivitymatrix formodesm = 1 and
m = 2, respectively [see Figs. 2(g) and 2(h)]. Interestingly, the struc-
tural connectivity matrices emerging for double-cluster-formation
also exhibit stripes for nonzero modes [Figs. 2(d)–2(f)]. The num-
ber of these stripes in each case is twice its corresponding mode
value m. According to the Hebbian learning rule [Eq. (4)], cou-
pling strengths between every two oscillators i and j approach a

stable value given by Kij = αs cos(ϕi − ϕj). For phase di�erences of
(2n − 1) π

2
, this entails that the connection weights between the cor-

responding oscillators decay to zero. Since the mode determines the
repetition of phase o�sets equal to (2n − 1) π

2
for each oscillator, it

also determines the number of stripes in the structural connectivity
matrices.

The emergence of stripes is also apparent in functional con-
nectivity matrices (Fig. 3). Here, stripes are symmetric, however,
since functional connectivity is undirected. Therefore, twice as many
stripes can be observed in functional connectivity matrices as com-
pared to structural connectivity matrices. Furthermore, the exact
location of stripes in the structural and functional connectivity
matrices is di�erent because temporal delays are not considered in
the computation of pairwise correlations.
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FIG. 5. Conduction velocity matrices when the coupling strength is static and the conduction is dynamic. Panel (a) shows the color-coded state of coherent-wave mode
of synchronization and cluster-formation observed at each point in the parameter space defined by εv and αv . Color coding is the same as in Fig. 1. Panels (b) and (c)
show the pairwise conduction velocity matrices for the state {1,s} (reflecting one full cycle of phase offsets) and the state {2,s} (reflecting two full cycles of phase offsets),
respectively. Panel (d) shows the pairwise conduction velocity matrices for the state {2,d}. Conduction velocities between the intracluster oscillators are noticeably higher than
those between other pairs. The conduction velocity matrices are averaged over the last 100 time steps of the simulation. Conduction velocity matrices for each parameter
combination are shown in Fig. S2(c) in the supplementary material.

B. Scenario II: Static coupling strengths, dynamic

conduction velocities

Next, we examine the e�ects of dynamic conduction velocity

on a network with static connection weights to establish the unique

e�ects of adaptive myelination on functional connectivity among

phase oscillators. To that end, we vary the learning rate εv and

enhancement factor αv controlling dynamic changes in conduction
velocity. Note that we no longer vary the coupling delay constant
T since delays depend on conduction. Rather, we initialize con-
duction velocity among oscillator pairs such that vij(t = 0) = 0.14,
which means that the initial coupling delays correspond to the
case where T ∼= 7. These parameter settings correspond to a system
exhibiting state {1,s} in simulations where conduction remains static.
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FIG. 6. Pairwise functional connectivity among oscillators when the coupling strength is static and the conduction is dynamic. Panel (a) shows the color-coded state of
coherent-wave mode of synchronization and cluster-formation observed at each point in the parameter space defined by εv and αv . Color coding is the same as in Fig. 1.
Panel (b) shows a representative functional connectivity matrix of the network for the state {1,s}. The matrix reflects a full cycle of phase offsets. Panel (c) shows a functional
connectivity matrix of the network for the state {1,s}. Two complete revolutions of the relative phase offsets are exhibited. Panel (d) shows a functional connectivity matrix
of the network for the state {2,d}. A vast majority of the pairwise correlations reflect either in-phase or anti-phase relations among oscillators. The correlation matrices were
computed over the last 100 time steps of the simulation. Functional connectivity matrices for each parameter combination are shown in Fig. S2(d) in the supplementary
material.

For dynamic conduction velocity, state {1,s} is still observed most
frequently irrespective of the values chosen for εv and αv. However,
within a contiguous region of parameter space, the system exhibits
state {2,d} as its secondary state, which is indicative of bistability
[Fig. 4(a)]. Furthermore, at the borders of this region, the system
exhibits a highly variable behavior, indicative of multistability.

Figure 4 shows absolute phase o�sets of all oscillators with
respect to the �rst. Remarkably, for state {2,d}, phases cluster around
0 and π with sharp transitions between the two rather than smooth
transitions. In fact, dynamic conduction velocity pushes phase o�-
sets to either 0 or π , which brings about a transformation from state
{2,s} to state {2,d}. This localized clustering leads to highly structured
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FIG. 7. Phase offsets with respect to the first oscillator when the coupling strength and the conduction velocity are both dynamic. Panel (a) shows the color-coded state of
coherent-wave mode of synchronization and cluster-formation observed at each point in the parameter space defined by εv and αv . Color coding is the same as in Fig. 1.
Gray circles mark erratic states. Panel (b) shows |1ϕ1,i | for the state {1,d}. Panel (c) shows |1ϕ1,i | for the state {1.5,d}. Phase offsets exhibit one and a half cycles. Panel
(d) shows |1ϕ1,i | for the state {0,s}. Aside from a few exceptions, offsets are generally close to zero. Panel (e) shows |1ϕ1,i | for the state {0,d}. While our procedure
identified this example as 0-mode synchronization, visually it appears to not fit any state particularly well. Phase offsets were averaged over the last 100 time steps. Phase
offsets for each parameter combination are shown in Fig. S3(b) in the supplementary material.

FIG. 8. Pairwise structural connectivity emerging when the coupling strength and the conduction velocity are both dynamic. Panel (a) shows the color-coded state of
coherent-wave mode of synchronization and cluster-formation observed at each point in the parameter space defined by εv and αv . Color coding is the same as in Fig. 1
(gray disks as in Fig. 7). Panels (b) shows structural connectivity of the network for the state {1,d}. Panel (c) shows structural connectivity matrix of the network for the state
{1.5,d}. As for simulations with static conduction velocity, in this region, connectivity matrices exhibit 3 (2m) stripes reflecting weak connections. Panel (d) shows structural
connectivity of the network for the state {0,s}. Panel (e) shows structural connectivity of the network for the state {0,d}. The structural connectivity matrices are averaged
over the last 100 time steps of the simulation. Structural connectivity matrices for each parameter combination are shown in Fig. S3(c) in the supplementary material.
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FIG. 9. Pairwise functional connectivity among oscillators when the coupling strength and the conduction velocity are both dynamic. Panel (a) shows the color-coded state
of coherent-wave mode of synchronization and cluster-formation observed at each point in the parameter space defined by εv and αv . Color coding is as in Fig. 1 (gray
disks as in Fig. 7). Panel (b) shows functional connectivity of the network for the state {1,d}. Panel (c) shows functional connectivity of the network for the state {1.5,d}. The
formation of 4m stripes of zero or very weak connection weights can be observed. Panel (d) shows the functional connectivity matrix for a network of the state {0,s}. Panel (e)
shows the functional connectivity matrix for a network of the state {0,d}. Correlation matrix elements are averaged over the last 100 time steps of the simulation. Functional
connectivity matrices for each parameter combination are shown in Fig. S3(e) in the supplementary material.

clusters, where an oscillator’s a�liation with a cluster is determined
by its location along the ring rather than by randomly distributed
initial phase values. Interestingly, conduction matrices emerging for
state {2,d} suggest that the system exhibits four distinct clusters rather
than two [see Fig. 5(d)], one cluster for each peak and trough of
the phase o�sets [cf. Fig. 4(d)]. That is, signals are conducted fast
among oscillators within a peak (trough) and slow among oscillators
across peaks (troughs). This is the result of initial conditions. With
conduction velocity being equal, short distances among oscillators
within a peak (trough) lead to short delays, whereas long distances
across peaks (troughs) lead to long delays. In this case, the pressure
to synchronize peaks (troughs) is most easily met when signals are
transmitted instantaneously within a peak (trough) or with a delay
matching exactly one period across peaks (troughs). Functionally,
these four clusters are not discernible [see Fig. 6(d)] since oscillators
falling into both peaks (troughs) exhibit no phase o�set with respect
to each other.

C. Scenario III: Dynamic coupling strengths

and conduction velocities

Having explored the e�ects of dynamic structural connectiv-
ity and dynamic conduction velocity in isolation, we next investigate
their interaction. Dynamic changes in connection strength and con-
duction velocity constitute the most biologically relevant scenario.

In this simulation, initial values of the conduction velocity matrix
v were again chosen such that they resemble the condition where
T ∼= 7. Furthermore, the learning rate εs was �xed at 0.1 (fast learn-
ing). Recall that this con�guration produces state {1,d} for static
conduction velocity [cf. Fig. 1(a)]. As for scenario II, we explore
the parameter space de�ned by the enhancement factor αv and the
learning rate εv controlling dynamic conduction velocity. Figure 7(a)
reveals that the behavior of the system is mainly a�ected by the
enhancement factor αv, which determines the maximum conduc-
tion velocity. If the learning rate εv is small, conduction velocity
changes too slowly to have any discernible in�uence on the behav-
ior of the system and state {1,d} is preserved for all values of αv.
Once the conduction learning rate εv is su�ciently large, however,
the behavior of the system is entirely determined by αv. Note that
in this case, the rate of change in conduction velocity may be still
a factor of 10 smaller than the learning rate controlling synaptic
plasticity.

For values of αv < 0.14, conduction necessarily decays toward
values lower than initialization. This produces a situation essentially
equivalent to fast learning and very long delays (T ≥ 9) in sce-
nario I and leads to the emergence of state {1.5,d} [cf. Fig. 1(f)]. For
αv ∼= 0.14, the system frequently exhibits erratic behavior. To account
for the system’s behavior as αv increases, it is essential to consider
the fact that both coupling strengths and conduction velocities evolve
according to the same Hebbian learning rule with the sole di�erence
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FIG. 10. Pairwise conduction velocities among oscillators when the coupling strength and the conduction velocity are both dynamic. Panel (a) shows the color-coded state
of coherent-wave mode of synchronization and cluster-formation observed at each point in the parameter space defined by εv and αv . Color coding is the same as in Fig. 1
(gray disks as in Fig. 7). Panel (b) shows the pairwise conduction velocity of the network for the state {1,d}. Conduction velocities only change slightly relative to their initial
values. Panel (c) shows pairwise conduction velocity of the network for the state {1.5,d}. Conduction velocities have decayed to zero. Panel (d) shows pairwise conduction
velocity of the network for the state {0,s}. Panel (e) shows pairwise conduction velocity of the network for the state {0,d}. The conduction velocity matrices are averaged over
the last 100 time steps of the simulation. Conduction velocity matrices for each parameter combination are shown in Fig. S3(d) in the supplementary material.

that conduction velocities are bounded from below at 0.1. This
implies that whenever the coupling strength between two oscillators

tends toward +αs, conduction velocity between the two increases
(toward αv). In contrast, whenever the coupling strength between
two oscillators tends toward −αs, coupling velocity between the
two decreases (toward 0.1). This implies that coupling strength and
conduction velocity act agonistically for oscillators within the same
cluster; these oscillators are both positively coupled and exhibit fast
conduction velocity (short delays). However, for oscillators in sepa-
rate clusters, coupling strength and conduction velocity act antago-
nistically. Negative coupling is paired with slow conduction velocity

(long delays). For intermediate values of αv, oscillators in di�erent

clusters see each other in anti-phase for phase o�sets smaller than π .
They thus form two clusters whose o�set is less than half a period
(depending on the exact o�set, our procedure may label them as sin-
gle or double cluster; see the boundary between red and blue regions

in Fig. 7). For large values of αv, oscillators in di�erent clusters see

each other in anti-phase for phase o�sets close to zero [Fig. 7(d)].

This allows them to form a single functional cluster [Fig. 9(d)] even
though theymay be structurally segregated, both in terms of coupling

strength [Fig. 8(d)] and conduction velocity [Fig. 10(d)]. The system

can thus exhibit a wide array of states not observed when considering
dynamic coupling strength alone.

IV. DISCUSSION

In the present study, we investigated the e�ects of dynamic cou-
pling strength and dynamic conduction velocity on the synchroniza-
tion behavior of weakly coupled oscillators arranged on a circle. For
dynamic coupling strength combinedwith static conduction velocity,
we found that, depending on the learning rate controlling changes in
coupling strength, a single or two clusters can emerge. This is in line
with previous studies on dynamic coupling in the Kuramotomodel.22

Furthermore, depending on the delay, phase o�sets may exhibit peri-
odicity according to coherent-wave modes of synchronization.22,23

For nonzeromodes, structural clusters become functionally apparent
only after correcting for o�sets. For zero modes, a tight correspon-
dence between structural and functional clusters is straightforwardly
apparent. This is no longer the case once conduction velocity is
allowed to vary. Already in the context of static coupling strength,
we observed that dynamic conduction velocity dissociates structural
from functional connectivity. In terms of coupling strength, the sys-
tem may appear as a single cluster. However, in terms of conduction
velocity, which is another structural aspect, a wide range of param-
eters leads to the formation of four distinct clusters with fast com-
munication within clusters and slow communication across clusters.
Interestingly, communication between neighboring clusters is, while
slower than within clusters, faster than between non-neighboring
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clusters. This leads to the emergence of two functional clusters. Oscil-
lator pairs with either very fast and very slow communication see
each other in phase since phase o�sets are either close to zero or some
integer multiple of 2π and hence form a single functional cluster.
This cluster is spatially discontinuous and interleaved with oscil-
lators belonging to a second cluster. Conduction velocity between
oscillators in separate clusters is such that these oscillators see each
other in anti-phase. If conduction velocity is dynamic, it is thus pos-
sible that clusters are structurally connected in terms of coupling
strength and yet functionally distinct because they are segregated by
another structural factor (conduction velocity, see Fig. 11). If both
coupling strength and conduction velocity are dynamic, we observed
that for a su�ciently large enhancement factor, which determines
maximum conduction velocity, a single functional cluster exhibit-
ing zero-mode synchronization emerges. Yet, structural connectivity
is characterized by positive values only for neighboring oscillators
and negative values between remote oscillators. Conduction velocity
counteracts the repellent e�ects of negative coupling by produc-
ing delays of roughly half a period such that negatively coupled
oscillator pairs see each other in anti-phase when they are in fact
in phase (see Fig. 12). Dynamic conduction velocity thus appears
to enable the system to resist the e�ects of coupling strength and
allow for both functional integration of structurally segregated oscil-
lators as well as functional segregation of structurally integrated
clusters.

In line with previous work,37,55–59we observe bi- andmultistabil-
ity for nonzero delays, most prominently at boundaries in parameter
space. Furthermore, regions of bi/ multistability appear to occur
largely as a function of delay (cf. Refs. 37 and 56), either in the form
of delay parameter T for scenario I or in the form of the enhance-
ment factor αv determining the maximum delay for scenarios II
and III. In contrast to previous studies that reported bistability of
synchronous and incoherent states,34,52,53 the circle topology of our
network supports bi/multistability between fully synchronous states
that di�er with respect to their coherent-wave mode of synchro-
nization and single- vs double-cluster-formation, at least as long as
either coupling strength or conduction velocity are dynamic. When
both coupling strength and conduction velocity are dynamic, we
additionally observe bistability between states that can and those
that cannot be characterized in terms of standing-wave mode and
cluster-formation. These latter states might simply re�ect incoher-
ence among oscillators. However, we cannot rule out that they re�ect
chimera states. This possibility is intriguing in light of previous stud-
ies showing that chimera states emerge from a pitchfork bifurcation
as a function of coupling delay.52,54The fact that this parameter is itself
dynamic in our simulations may give rise to hitherto unobserved
behavior (such as chimera states characterized by mixtures of those
states described here) and constitute an interesting avenue for further
research.

In light of neuroscienti�c evidence that myelination continues
to exhibit adaptive changes even in the adult brain,35,60,61 our results
highlight the importance of considering this factor in computational
models of learning. For instance, our observation that dynamic con-
duction velocity provides the possibility for synchronization even
in the context of fast learning highlights that adaptive myelination
may have a useful dampening role to compensate for fast synaptic
changes that might otherwise desynchronize neural groups. It may

FIG. 11. Dissociation between structural and functional clusters for the state
{2,d} observed in scenario II. Panel (a) shows phase offsets between every oscil-
lator and the first (|1ϕ1,i |). Offsets reflect two anti-phase clusters. Panel (b)
shows pairwise conduction velocity reflecting four structural clusters. Panel (c)
shows pairwise functional connectivity reflecting two functional clusters.

thus prevent networks in the brain from associating or dissociat-
ing too quickly under the in�uence of experiences. Interestingly, this
compensation involves both increases and decreases in conduction
velocity, highlighting that simply maximizing conduction speed is
not necessarily optimal.32 Furthermore, the compensatory e�ect of
dynamic conduction velocity could be observed in our simulations
even when its rate of change is a factor of 10 slower than that of
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FIG. 12. Dissociation between structural and functional clusters for state {0,s}
observed in scenario III. Panel (a) shows phase offsets between every oscillator
and the first (|1ϕ1,i)|. Offsets reflect a single (global) cluster. Panel (b) shows
pairwise structural connectivity reflecting two clusters. Panel (c) shows pairwise
conduction velocity reflecting two clusters. Panel (d) shows pairwise functional
connectivity reflecting a single cluster.

synaptic strength. This suggests that our �ndings are relevant for
the biologically plausible scenario where myelin related changes lag
behind changes in synaptic e�cacy, as it may take up to several weeks
of daily stimulation of neuronal axons before changes in myelination
can be detected.62,63 A role of slowly changing myelination in sharp-
ening synchronization during neuronal communication would be in
line with several theories in which rhythmic spike synchronization
is thought to determine the e�ciency of neural communication.64–67

Our results call for an investigation of the neurocomputationalmech-
anisms allowing for activity- and experience-dependentmodulations
of adaptive myelination. Based on observations that white matter
structural changes resemble synaptic changes to the extent that they
depend on the frequency of neural coactivation,32–36,38,61,68 we imple-
mented it as a Hebbian learning process. This is surely an over-
simpli�cation given that the control of myelination in adults, while
incompletely understood, involves glia-neuronal interactions. We
could not consider these here due to the simplicity of our model.
Future work is thus needed to develop a more biologically appropri-
ate learning mechanism and embed it in a model incorporating both
types of cells. Nevertheless, our approach captures the most essential
dynamical aspect of adaptive myelination, namely that conduction
velocity of frequently used connections is strengthened while that
of rarely used connections is weakened. Other simpli�cations of our
work include the arrangement of oscillators along a circle, arbitrary
units of space and time, and the lack of input. However, using these
simpli�cations, we were able to decrease the complexity of computa-
tions and the number of parameters in order to plainly identify the
in�uences of synaptic and myelin plasticity on the collective behav-
ior of oscillators. Furthermore, since the system studied here is not
intended to address any speci�c neural processes, our results are su�-
ciently general to be translated to several spatial and temporal scales.
Future research will be necessary to investigate the contribution of
realistic network topology as well as of functionally relevant external
stimulation.

SUPPLEMENTARY MATERIAL

See the supplementary material for the overall view of the
changes in structural and functional characteristic behavior of the
network in relation to the learning parameters.

ACKNOWLEDGMENTS

P.D.W. was supported by an NWOVICI grant (No. 453.04.002).
M.S. was funded by the European Union’s Horizon 2020 Research
and Innovation Program under Grant Agreement No. 737691
(HBP SGA2). M.M. was supported by an NWO VENI grant (No.
451.15.012). This work was supported by the Dutch Province of
Limburg.

REFERENCES
1A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept
in Nonlinear Sciences, Cambridge Nonlinear Science Series (Cambridge University
Press, 2001).
2H. Haken, Brain Dynamics: Synchronization and Activity Patterns in Pulse-
Coupled Neural Nets with Delays and Noise (Springer, 2002).
3H. F. El-Nashar, Y. Zhang, H. A. Cerdeira, and A. F. Ibiyinka, Chaos 13, 1216
(2003).

Chaos 29, 083122 (2019); doi: 10.1063/1.5092786 29, 083122-14

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha
https://doi.org/10.1063/1.5092786{#}suppl
https://doi.org/10.1063/1.1611851


Chaos ARTICLE scitation.org/journal/cha

4A. Mörtl, T. Lorenz, and S. Hirche, PLoS One 9, e95195 (2014).
5P. Kumar, D. K. Verma, and P. Parmananda, Phys. Lett. A 381, 2337 (2017).
6D. Gonze, S. Bernard, C. Waltermann, A. Kramer, and H. Herzel, Biophys. J.
89, 120 (2005).
7J. F. Hipp, A. K. Engel, and M. Siegel, Neuron 69, 387 (2011).
8C. M. Krause, B. Pörn, A. H. Lang, andM. Laine, Cogn. Brain Res. 5, 295 (1997).
9L.Melloni, C.Molina,M. Pena,D. Torres,W. Singer, andE. Rodriguez, J. Neurosci.
27, 2858 (2007).
10J. Fell, P. Klaver, C. E. Elger, and P. Fries, Brain Res. Rev. 42, 265 (2003).
11S. M. Doesburg, A. B. Roggeveen, K. Kitajo, and L. M. Ward, Cereb. Cortex
18, 387 (2008).
12T. Womelsdorf and P. Fries, Curr. Opin. Neurobiol. 17, 154 (2007).
13Y. Kazanovich and R. Borisyuk, Neural Netw. 87, 1 (2017).
14O. Burylko, Y. Kazanovich, and R. Borisyuk, Sci. Rep. 8, 416 (2018).
15G. Zouridakis, F. Baluch, I. Stevenson, J. Diaz, and D. Subramanian, in 3rd Inter-
national IEEE/EMBS Conference on Neural Engineering, Kohala Coast, HI, 2–5May
2007 (IEEE, 2007), pp. 310–313.
16R. Q. Quiroga, J. Arnhold, and P. Grassberger, Phys. Rev. E 61, 5142 (2000).
17J.-P. P�ster and W. Gerstner, J. Neurosci. 26, 9673 (2006).
18W. Singer, Annu. Rev. Physiol 55, 349 (1993).
19S. Song, K. D. Miller, and L. F. Abbott, Nat. Neurosci. 3, 919 (2000).
20P. Seliger, S. C. Young, and L. S. Tsimring, Phys. Rev. E 65, 041906 (2002).
21T. Nowotny, V. P. Zhigulin, A. I. Selverston, H. D. I. Abarbanel, and M. I.
Rabinovich, J. Neurosci. 23, 9776 (2003).
22R. K. Niyogi and L. Q. English, Phys. Rev. E 80, 066213 (2009).
23L. Timms and L. Q. English, Phys. Rev. E 89, 032906 (2014).
24B. Siri, M. Quoy, B. Delord, B. Cessac, and H. Berry, J. Physiol. Paris 101, 136
(2007).
25R. D. Traubab, N. Spruston, I. Soltesz, A. Konnerth, M. A. Whittington, and
J. G. Je�erys, Prog. Neurobiol. 55, 563 (1998).
26D. O. Hebb, The Organization of Behavior (Wiley, New York, 1949).
27H. Markram, L. H. R. Lübke, M. Frotscher, and B. Sakmann, Science 275, 213
(1997).
28Y. L. Maistrenko, B. Lysyansky, C. Hauptmann, O. Burylko, and P. A. Tass, Phys.
Rev. E 75, 066207 (2007).
29O. V. Popovych, S. Yanchuk, and P. A. Tass, Sci. Rep. 3, 2926 (2013).
30D. V. Kasatkin, S. Yanchuk, E. Schöll, and V. I. Nekorkin, Phys. Rev. E 96, 062211
(2017).
31R. D. Fields, Science 344, 264 (2014).
32R. D. Fields, Nat. Rev. Neurosci. 16, 756 (2015).
33I. A. McKenzie, D. Ohayon, H. Li, J. P. De Faria, B. Emery, K. Tohyama, and
W. D. Richardson, Science 346, 318 (2014).
34M. Nickel and C. Gu, Neural Plast. 2018, 1 (2018).
35J. Scholz, M. C. Klein, T. E. J. Behrens, and H. Johansen-Berg, Nat. Neurosci. 12,
1370 (2009).
36D. Purger, E. M. Gibson, and M. Monje, Neuropharmacology 110, 563 (2016).
37M. K. S. Yeung and S. H. Strogatz, Phys. Rev. Lett. 82, 648 (1999).

38K.-J. Chang, S. A. Redmond, and J. R. Chan, Nat. Neurosci. 19, 190 (2016).
39S. Pajevic, P. J. Basser, and A. R. D. Fields, Neuroscience 276, 135 (2014).
40D. J. Dutta, D. Ho, P. R. Lee, S. Pajevic, O. Bukalo, W. C. Hu�man, and H. Wake,
Proc. Natl. Acad. Sci. U. S. A. 115, 11832 (2018).
41R. D. Fields, Science 330, 768 (2010).
42K. Barrera, P. Chu, J. Abramowitz, R. Steger, R. L. Ramos, and J. C. Brumberg,
Dev. Neurobiol. 73, 297 (2013).
43R. J. Zatorre, R. D. Fields, and H. Johansen-berg, Nat. Neurosci. 15, 528
(2012).
44J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, F. Ritort, and R. Spigler, Rev. Mod.
Phys. 77, 137 (2005).
45G. M. Wittenberg and S. S.-H. Wang, J. Neurosci. 26, 6610 (2006).
46G. Q. Bi and M. M. Poo, J. Neurosci. 18, 10464 (1998).
47D. H. Zanette, Phys. Rev. E 62, 3167 (2000).
48K. Dénes, B. Sándor, and Z. Néda, Commun. Nonlinear Sci. Numer. Simul.
78, 104868 (2019).
49M. Schröder, M. Timme, and D. Witthaut, Chaos 27, 073119 (2017).
50Y. Kuramoto and D. Battogtokh, Nonlinear Phenom. Complex Syst. 5, 380
(2002).
51D. M. Abrams and S. H. Strogatz, Phys. Rev. Lett. 93, 174102 (2004).
52T. Kotwal, X. Jiang, and D. M. Abrams, Phys. Rev. Lett. 119, 264101 (2017).
53N. Yao, Z.-G. Huang, Y.-C. Lai, and Z.-G. Zheng, Sci. Rep. 3, 3522 (2013).
54C. R. Laing, Chaos 19, 013113 (2009).
55Y. Nakamura, F. Tominaga, and T. Munakata, Phys. Rev. E 49, 4849 (1994).
56H. G. Schuster and P. Wagner, Prog. Theor. Phys. 81, 939 (1989).
57E. Niebur, H. G. Schuster, and D. M. Kammen, Phys. Rev. Lett. 67, 2753
(1991).
58E. Montbrió, D. Pazó, and J. Schmidt, Phys. Rev. E 74, 056201 (2006).
59C. Hauptmann, O. Omel‘chenko, O. V. Popovych, Y. Maistrenko, and P. A. Tass,
Phys. Rev. E 76, 066209 (2007).
60E. M. Gibson, D. Purger, C. W. Mount, A. K. Goldstein, G. L. Lin, L. S. Wood,
I. Inema, S. E. Miller, G. Bieri, J. B. Zuchero, B. A. Barres, P. J. Woo, H. Vogel, and
M. Monje, Science 344, 1252304 (2014).
61C. Sampaio-Baptista, A. A. Khrapitchev, S. Foxley, T. Schlagheck, J. Scholz,
S. Jbabdi, G. C. DeLuca, K. L. Miller, A. Taylor, N. Thomas, J. Kleim, N. R. Sibson,
D. Bannerman, and H. Johansen-Berg, J. Neurosci. 33, 19499 (2013).
62T. Ishibashi, K. A. Dakin, B. Stevens, P. R. Lee, S. V. Kozlov, C. L. Stewart, and
R. D. Fields, Neuron 49, 823 (2006).
63C. Demerens, B. Stanko�, M. Logak, P. Anglade, B. Allinquant, F. Couraud,
B. Zalc, and C. Lubetzki, Proc. Natl. Acad. Sci. U. S. A. 93, 9887 (1996).
64P. Fries, Trends Cogn. Sci. 9, 474 (2005).
65P. Fries, Neuron 88, 220 (2015).
66E. Lowet, B. Gips, M. J. Roberts, P. De Weerd, O. Jensen, and J. van der Eerden,
PLoS Biol. 16, e2004132 (2018).
67O. Jensen and J. E. Lisman, J. Neurophysiol. 83, 2602 (2000).
68T. Blumenfeld-Katzir, O. Pasternak, M. Dagan, and Y. Assaf, PLoS One 6, e20678
(2011).

Chaos 29, 083122 (2019); doi: 10.1063/1.5092786 29, 083122-15

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha
https://doi.org/10.1371/journal.pone.0095195
https://doi.org/10.1016/j.physleta.2017.05.032
https://doi.org/10.1529/biophysj.104.058388
https://doi.org/10.1016/j.neuron.2010.12.027
https://doi.org/10.1016/S0926-6410(97)00009-8
https://doi.org/10.1523/JNEUROSCI.4623-06.2007
https://doi.org/10.1016/S0165-0173(03)00178-4
https://doi.org/10.1093/cercor/bhm073
https://doi.org/10.1016/j.conb.2007.02.002
https://doi.org/10.1016/j.neunet.2016.12.003
https://doi.org/10.1038/s41598-017-18666-3
https://doi.org/10.1103/PhysRevE.61.5142
https://doi.org/10.1523/JNEUROSCI.1425-06.2006
https://doi.org/10.1146/annurev.ph.55.030193.002025
https://doi.org/10.1038/78829
https://doi.org/10.1103/PhysRevE.65.041906
https://doi.org/10.1523/JNEUROSCI.23-30-09776.2003
https://doi.org/10.1103/PhysRevE.80.066213
https://doi.org/10.1103/PhysRevE.89.032906
https://doi.org/10.1016/j.jphysparis.2007.10.003
https://doi.org/10.1016/S0301-0082(98)00020-3
https://doi.org/10.1126/science.275.5297.213
https://doi.org/10.1103/PhysRevE.75.066207
https://doi.org/10.1038/srep02926
https://doi.org/10.1103/PhysRevE.96.062211
https://doi.org/10.1126/science.1253851
https://doi.org/10.1038/nrn4023
https://doi.org/10.1126/science.1254960
https://doi.org/10.1155/2018/6436453
https://doi.org/10.1038/nn.2412
https://doi.org/10.1016/j.neuropharm.2015.08.001
https://doi.org/10.1103/PhysRevLett.82.648
https://doi.org/10.1038/nn.4200
https://doi.org/10.1016/j.neuroscience.2013.11.007
https://doi.org/10.1073/pnas.1811013115
https://doi.org/10.1126/science.1199139
https://doi.org/10.1002/dneu.22060
https://doi.org/10.1038/nn.3045
https://doi.org/10.1103/RevModPhys.77.137
https://doi.org/10.1523/JNEUROSCI.5388-05.2006
https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
https://doi.org/10.1103/PhysRevE.62.3167
https://doi.org/10.1016/j.cnsns.2019.104868
https://doi.org/10.1063/1.4995963
https://doi.org/10.1103/PhysRevLett.93.174102
https://doi.org/10.1103/PhysRevLett.119.264101
https://doi.org/10.1038/srep03522
https://doi.org/10.1063/1.3068353
https://doi.org/10.1103/PhysRevE.49.4849
https://doi.org/10.1143/PTP.81.939
https://doi.org/10.1103/PhysRevLett.67.2753
https://doi.org/10.1103/PhysRevE.74.056201
https://doi.org/10.1103/PhysRevE.76.066209
https://doi.org/10.1126/science.1252304
https://doi.org/10.1523/JNEUROSCI.3048-13.2013
https://doi.org/10.1016/j.neuron.2006.02.006
https://doi.org/10.1073/pnas.93.18.9887
https://doi.org/10.1016/j.tics.2005.08.011
https://doi.org/10.1016/j.neuron.2015.09.034
https://doi.org/10.1371/journal.pbio.2004132
https://doi.org/10.1152/jn.2000.83.5.2602
https://doi.org/10.1371/journal.pone.0020678

	I. INTRODUCTION
	II. MATERIALS AND METHODS
	A. Weakly coupled oscillator model
	B. Quantitative analyses
	1. Global synchronization behavior
	2. Pairwise connectivity
	3. Numerical simulations


	III. RESULTS
	A. Scenario I: Dynamic coupling strengths,static conduction velocities
	B. Scenario II: Static coupling strengths, dynamic conduction velocities
	C. Scenario III: Dynamic coupling strengthsand conduction velocities

	IV. DISCUSSION
	ACKNOWLEDGMENTS

