25 research outputs found

    The development of TH2 responses from infancy to 4 years of age and atopic sensitization in areas endemic for helminth infections

    Get PDF
    BACKGROUND: Helminth infections and allergies are associated with TH(2) responses. Whereas the development of TH(2) responses and allergic disorders in pediatric populations has been examined in affluent countries, no or little data exist from low income regions of the world. The aim of this study is to examine factors influencing the development of TH(2) responses of children born in areas endemic for helminth infections and to relate these factors to atopic sensitization at 4 years of age. METHODS: Data were collected from pregnant mothers on helminth infections, education and socioeconomic status (SES). Total IgE, IL-5 in response to mitogen, and helminth antigens were measured in children at 2, 5, 12, 24 and 48 months of age. Skin prick testing (SPT) and allergen-specific IgE were determined at 4 years of age. RESULTS: Strong TH(2) responses were seen at 5 months of age and increased with time. Although maternal filarial infection was associated with helminth-antigen specific TH(2) responses, it was low maternal education or SES but not helminth infection, which was associated with the development of high total IgE and PHA-induced IL-5. At 4 years of age when allergen reactivity was assessed by SPT, the high general TH(2) responses did not translate into higher prevalence of SPT. The risk factor for SPT reactivity was low maternal education which decreased the risk of SPT positivity to allergens (adjusted OR, 0.32; 95% CI, 0.12 – 0.87) independently of maternal filarial infection which tended to reduce the child’s risk for being SPT positive (adjusted OR, 0.35; 95% CI, 0.07 – 1.70). CONCLUSIONS: In areas endemic for helminths, potent TH(2) responses were seen early in life, but did not translate into a higher SPT reactivity to allergens. Therefore, in many parts of the world TH(2) responses in general and IgE in particular cannot be used for diagnosis of allergic diseases

    Environmental determinants of islet autoimmunity (ENDIA): a pregnancy to early life cohort study in children at-risk of type 1 diabetes

    Get PDF
    Members of ENDIA Study Group: Peter Baghurst, Simon Barry, Jodie Dodd, Maria Makrides for the University of Adelaide.BACKGROUND The incidence of type 1 diabetes has increased worldwide, particularly in younger children and those with lower genetic susceptibility. These observations suggest factors in the modern environment promote pancreatic islet autoimmunity and destruction of insulin-producing beta cells. The Environmental Determinants of Islet Autoimmunity (ENDIA) Study is investigating candidate environmental exposures and gene-environment interactions that may contribute to the development of islet autoimmunity and type 1 diabetes. METHODS/DESIGN ENDIA is the only prospective pregnancy/birth cohort study in the Southern Hemisphere investigating the determinants of type 1 diabetes in at-risk children. The study will recruit 1,400 unborn infants or infants less than six months of age with a first-degree relative (i.e. mother, father or sibling) with type 1 diabetes, across five Australian states. Pregnant mothers/infants will be followed prospectively from early pregnancy through childhood to investigate relationships between genotype, the development of islet autoimmunity (and subsequently type 1 diabetes), and prenatal and postnatal environmental factors. ENDIA will evaluate the microbiome, nutrition, bodyweight/composition, metabolome-lipidome, insulin resistance, innate and adaptive immune function and viral infections. A systems biology approach will be used to integrate these data. Investigation will be by 3-monthly assessments of the mother during pregnancy, then 3-monthly assessments of the child until 24 months of age and 6-monthly thereafter. The primary outcome measure is persistent islet autoimmunity, defined as the presence of autoantibodies to one or more islet autoantigens on consecutive tests. DISCUSSION Defining gene-environment interactions that initiate and/or promote destruction of the insulin-producing beta cells in early life will inform approaches to primary prevention of type 1 diabetes. The strength of ENDIA is the prospective, comprehensive and frequent systems-wide profiling from early pregnancy through to early childhood, to capture dynamic environmental exposures that may shape the development of islet autoimmunity. TRIAL REGISTRATION Australia New Zealand Clinical Trials Registry ACTRN12613000794707.Megan AS Penno, Jennifer J Couper, Maria E Craig, Peter G Colman, William D Rawlinson, Andrew M Cotterill, Timothy W Jones, Leonard C Harrison and ENDIA Study Grou

    RNA in defense: CRISPRs protect prokaryotes against mobile genetic elements

    No full text
    The CRISPR/Cas system in prokaryotes provides resistance against invading viruses and plasmids. Three distinct stages in the mechanism can be recognized. Initially, fragments of invader DNA are integrated as new spacers into the repetitive CRISPR locus. Subsequently, the CRISPR is transcribed and the transcript is cleaved by a Cas protein within the repeats, generating short RNAs (crRNAs) that contain the spacer sequence. Finally, crRNAs guide the Cas protein machinery to a complementary invader target, either DNA or RNA, resulting in inhibition of virus or plasmid proliferation. In this article, we discuss our current understanding of this fascinating adaptive and heritable defense system, and describe functional similarities and differences with RNAi in eukaryote
    corecore