3,323 research outputs found

    Quantum spin glass in anisotropic dipolar systems

    Full text link
    The spin-glass phase in the \LHx compound is considered. At zero transverse field this system is well described by the classical Ising model. At finite transverse field deviations from the transverse field quantum Ising model are significant, and one must take properly into account the hyperfine interactions, the off-diagonal terms in the dipolar interactions, and details of the full J=8 spin Hamiltonian to obtain the correct physical picture. In particular, the system is not a spin glass at finite transverse fields and does not show quantum criticality.Comment: 6 pages, 2 figures, to appear in J. Phys. Condens. Matter (proceedings of the HFM2006 conference

    Supersymmetric Higgs Triplets and Bilinear R-Parity Nonconservation

    Full text link
    The supersymmetric standard model of particle interactions is extended to include two Higgs triplet superfields at the TeV scale, carrying two units of lepton number. Realistic tree-level Majorana neutrino masses are obtained in the presence of soft, i.e. bilinear, R-parity nonconservation.Comment: 5 pages, no figur

    Elastic νe\nu e^- scattering of solar neutrinos with electromagnetic moments

    Get PDF
    We consider the azimuthal asymmetry of the recoil electrons in elastic νe\nu e^- scattering of solar neutrinos, which can arise if neutrinos have electromagnetic moments and there is a large solar magnetic field. We show that using this effect it is not possible to distinguish between magnetic and electric dipole moment in the 1-Dirac and 2-Majorana neutrino cases and that averaging over neutrino energy is important and suppresses the azimuthal asymmetry in the 2-Majorana case.Comment: 4 pages, Talk given by T. Schwetz at EuroConference on Frontiers in Particle Astrophysics and Cosmology, San Feliu de Guixols, Spain, 30 Sept.-5 Oct. 200

    Low energy scattering with a nontrivial pion

    Get PDF
    An earlier calculation in a generalized linear sigma model showed that the well-known current algebra formula for low energy pion pion scattering held even though the massless Nambu Goldstone pion contained a small admixture of a two-quark two-antiquark field. Here we turn on the pion mass and note that the current algebra formula no longer holds exactly. We discuss this small deviation and also study the effects of an SU(3) symmetric quark mass type term on the masses and mixings of the eight SU(3) multiplets in the model. We calculate the s wave scattering lengths, including the beyond current algebra theorem corrections due to the scalar mesons, and observe that the model can fit the data well. In the process, we uncover the way in which linear sigma models give controlled corrections (due to the presence of scalar mesons) to the current algebra scattering formula. Such a feature is commonly thought to exist only in the non-linear sigma model approach.Comment: 15 pages, 8 figure

    Multiflavor Massive Schwinger Model With Non-Abelian Bosonization

    Get PDF
    We revisit the treatment of the multiflavor massive Schwinger model by non-Abelian Bosonization. We compare three different approximations to the low-lying spectrum: i) reading it off from the bosonized Lagrangian (neglecting interactions), ii) semi-classical quantization of the static soliton, iii) approximate semi-classical quantization of the ``breather'' solitons. A number of new points are made in this process. We also suggest a different ``effective low-energy Lagrangian'' for the theory which permits easy calculation of the low-energy scattering amplitudes. It correlates an exact mass formula of the system with the requirement of the Mermin-Wagner theorem

    Note on Triangle Anomalies and Assignment of Singlet in 331-like Model

    Full text link
    It is pointed out that in the 331331-like model which uses both fundamental and complex conjugate representations for an assignment of the representations to the left-handed quarks and the scalar representation to their corresponding right-handed counterparts, the nature of the scalar should be taken into account in order to make the fermion triangle anomalies in the theory anomaly-free, i.e. renormalizable in a sense with no anomalies, even after the spontaneous symmetry breaking.Comment: 8 page no figures, acknowledgments adde

    Analyzing tensleep natural fracture properties using X-ray CT scanner

    Get PDF

    Is Weak Pseudo-Hermiticity Weaker than Pseudo-Hermiticity?

    Full text link
    For a weakly pseudo-Hermitian linear operator, we give a spectral condition that ensures its pseudo-Hermiticity. This condition is always satisfied whenever the operator acts in a finite-dimensional Hilbert space. Hence weak pseudo-Hermiticity and pseudo-Hermiticity are equivalent in finite-dimensions. This equivalence extends to a much larger class of operators. Quantum systems whose Hamiltonian is selected from among these operators correspond to pseudo-Hermitian quantum systems possessing certain symmetries.Comment: published version, 10 page

    Bi-maximal mixing at GUT, the low energy data and the leptogenesis

    Full text link
    In the framework of the minimum supersymmetric model with right-handed neutrinos, we consider the Bi-maximal mixing which is realized at the GUT scale and discuss a question that this model can reproduce the low energy phenomena and the leptogenesis.Comment: Talk given by E. Takasugi at NuFact04, Osaka, Japan, July 26 - August 1,2004 - 3 pages, 4 figure
    corecore