463 research outputs found

    Experiments in a three-dimensional adaptive-wall wind tunnel

    Get PDF
    Three dimensional adaptive-wall experiments were performed in the Ames Research Center (ARC) 25- by 13-cm indraft wind tunnel. A semispan wing model was mounted to one sidewall of a test section with solid sidewalls, and slotted top and bottom walls. The test section had separate top and bottom plenums which were divided into streamwise and cross-stream compartments. An iterative procedure was demonstrated for measuring wall interference and for adjusting the plenum compartment pressures to eliminate such interference. The experiments were conducted at a freestream Mach number of 0.60 and model angles of attack between 0 and 6 deg. Although in all the experiments wall interference was reduced after the plenum pressures were adjusted, interference could not be completely eliminated

    Analysis of turbofan propulsion system weight and dimensions

    Get PDF
    Weight and dimensional relationships that are used in aircraft preliminary design studies are analyzed. These relationships are relatively simple to prove useful to the preliminary designer, but they are sufficiently detailed to provide meaningful design tradeoffs. All weight and dimensional relationships are developed from data bases of existing and conceptual turbofan engines. The total propulsion system is considered including both engine and nacelle, and all estimating relations stem from physical principles, not statistical correlations

    A two-dimensional adaptive-wall test section with ventilated walls in the Ames 2- by 2-foot transonic wind tunnel

    Get PDF
    The first tests conducted in the adaptive-wall test section of the Ames Research Center's 2- by 2-Foot Transonic Wind Tunnel are described. A procedure was demonstrated for reducing wall interference in transonic flow past a two-dimensional airfoil by actively controlling flow through the slotted walls of the test section. Flow through the walls was controlled by adjusting pressures in compartments of plenums above and below the test section. Wall interference was assessed by measuring (with a laser velocimeter) velocity distributions along a contour surrounding the model, and then checking those measurements for their compatibility with free-air far-field boundary conditions. Plenum pressures for minimum wall interference were determined from empirical influence coefficients. An NACA 0012 airfoil was tested at angles of attach of 0 and 2, and at Mach numbers between 0.70 and 0.85. In all cases the wall-setting procedure greatly reduced wall interference. Wall interference, however, was never completely eliminated, primarily because the effect of plenum pressure changes on the velocities along the contour could not be accurately predicted

    Adaptive-wall wind-tunnel research at NASA-Ames Research Center

    Get PDF
    Adaptive wall wind tunnel research is summarized. Small scale two and three dimensional wind tunnel experiments and numerical experiments with a three dimensional adaptive wall simulator are included. A NACA 0012 airfoil was tested in a 25 by 13 cm slotted wall test section. Airflow through the test section walls was controlled by adjusting the pressures in segmented plenums. Interference free conditions were successfully attained in subsonic and transonic flows. For the three dimensional experiment, the 25 by 13 cm wind tunnel was modified to permit cross stream wall adjustments. The test model was a semispan wing mounted to one sidewall. Wall interference was substantially reduced at several angles of attack at Mach 0.60. A wing on wall configuration was also modeled in the numerical experiments. These flow simulations showed that free air conditions can be approximated by adjusting boundary conditions at only the floor and ceiling of the test section. No sidewall control was necessary. Typical results from these experiments are discussed

    Methods for assessing wall interference in the 2- by 2-foot adaptive-wall wind tunnel

    Get PDF
    Discussed are two methods for assessing two-dimensional wall interference in the adaptive-wall test section of the NASA Ames 2 x 2-Foot Transonic Wind Tunnel: (1) a method for predicting free-air conditions near the walls of the test section (adaptive-wall methods); and (2) a method for estimating wall-induced velocities near the model (correction methods), both of which methods are based on measurements of either one or two components of flow velocity near the walls of the test section. Each method is demonstrated using simulated wind tunnel data and is compared with other methods of the same type. The two-component adaptive-wall and correction methods were found to be preferable to the corresponding one-component methods because: (1) they are more sensitive to, and give a more complete description of, wall interference; (2) they require measurements at fewer locations; (3) they can be used to establish free-stream conditions; and (4) they are independent of a description of the model and constants of integration

    Advanced Computer Dormant Reliability Study Final Report

    Get PDF
    Reliability of integrated circuits and discrete components of electronics for computer and dormant module for Minuteman

    Pressure Sensitive Paint Applied to Flexible Models Project

    Get PDF
    One gap in current pressure-measurement technology is a high-spatial-resolution method for accurately measuring pressures on spatially and temporally varying wind-tunnel models such as Inflatable Aerodynamic Decelerators (IADs), parachutes, and sails. Conventional pressure taps only provide sparse measurements at discrete points and are difficult to integrate with the model structure without altering structural properties. Pressure Sensitive Paint (PSP) provides pressure measurements with high spatial resolution, but its use has been limited to rigid or semi-rigid models. Extending the use of PSP from rigid surfaces to flexible surfaces would allow direct, high-spatial-resolution measurements of the unsteady surface pressure distribution. Once developed, this new capability will be combined with existing stereo photogrammetry methods to simultaneously measure the shape of a dynamically deforming model in a wind tunnel. Presented here are the results and methodology for using PSP on flexible surfaces

    Effects of upper surface modification on the aerodynamic characteristics of the NACA 63 sub 2-215 airfoil section

    Get PDF
    An upper surface modification designed to increase the maximum lift coefficient of a 63 sub 2 - 215 airfoil section was tested at Mach numbers of 0.2, 0.3, and 0.4 Reynolds numbers of 1.3 x 1 million, 2 x 10 sub 6 and 2.5 x 1 million. Comparisons of the aerodynamic coefficients before and after the modification were made. The upper surface modification increased the maximum lift coefficient of the airfoil significantly at all conditions

    Alternative Ear-Canal Measures Related to Absorbance

    Get PDF
    Abstract: Several alternative ear-canal measures are similar to absorbance in their requirement for prior determination of a Thévenin-equivalent sound

    Measurements of Parachute Dynamics in the World's Largest Wind Tunnel by Stereo Photogrammetry

    Get PDF
    Between 2012 and 2017, parachutes for four NASA Projects were tested in the 80- by 120-Ft test section of the National Full-Scale Aerodynamic Complex (NFAC) at NASA Ames Research Center. These projects were: (1) Low-Density Supersonic Decelerator (LDSD); (2) Capsule Parachute Assembly System (CPAS, for Orion); (3) Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight, a Mars mission); and (4) Mars 2020. In all tests stereo photogrammetry was used to measure time-dependent positions of features on the canopies. For the LDSD and CPAS tests, where the purpose was to study the trade-off between stability and drag of different parachute designs, the pendulum motion of the canopies about the riser attachment point was measured by calibrated cameras in the diffuser. The CPAS test also included static measurements where the inflated parachutes were pulled to the side by a system of tethers. The Insight tests were structural qualification tests where each canopy was packed in a bag and launched from a mortar. Cameras in the diffuser measured the trajectory of the bag and the stripping of the bag from the canopy. The Mars 2020 test was a workmanship verification test where the canopies were either launched from a mortar or deployed from a sleeve stretched along the tunnel axis. The deployments were recorded from many directions by thirteen high-speed cameras distributed in the diffuser and test section. Photogrammetry was not planned; however, after a tunnel-related accident ended the test prematurely, photogrammetric measurements were bootstrapped from the images to support the accident investigations. This paper describes how the photogrammetry measurements were made in each test and presents typical results
    corecore