561 research outputs found

    193 MOLECULAR CONTROL OF ARCTICULAR CARTILAGE DEGENERATION BY TRANSFORMING GROWTH FACTOR ALPHA

    Get PDF

    Relationship between Peak Inspiratory Flow and Patient and Disease Characteristics in Individuals with COPD-A Systematic Scoping Review

    Get PDF
    Optimal delivery of medication via dry powder inhalers, the most commonly prescribed inhaler type, is dependent on a patient achieving a minimum level of inspiratory flow during inhalation. However, measurement of peak inspiratory flow (PIF) against the simulated resistance of a dry powder inhaler is not frequently performed in clinical practice due to time or equipment limitations. Therefore, defining which patient characteristics are associated with lower PIF is critically important to help clinicians optimize their inhaler choice through a more personalized approach to prescribing. The objective of this scoping review was to systematically evaluate patient and disease characteristics determining PIF in patients with chronic obstructive pulmonary disease (COPD). Medline, Cochrane and Embase databases were systematically searched for relevant studies on PIF in patients with COPD published in English between January 2000 and May 2021. The quality of evidence was assessed using a modified Grading of Recommendations Assessment, Development and Evaluation checklist. Of 3382 citations retrieved, 35 publications were included in the review (nine scored as high quality, 13 as moderate, nine as low, and four as very low). Factors correlating with PIF in >70% of papers included both patient characteristics (lower PIF correlated with increased age, female gender, shorter height, decreased handgrip and inspiratory muscle strength, and certain comorbidities) and disease characteristics (lower PIF correlated with markers of lung hyperinflation, lower peak expiratory flow [PEF] and increased disease severity). Other factors correlating with adequate/optimal or improved PIF included education/counseling and exercise/inspiratory muscle training; impaired physical function and errors in inhalation technique/non-adherence were associated with low/suboptimal PIF. In conclusion, clinicians should measure PIF against the simulated resistance of a particular device wherever possible. However, as this often cannot be done due to lack of resources or time, the patient and disease characteristics that influence PIF, as identified in this review, can help clinicians to choose the most appropriate inhaler type for their patients

    Momentum distributions in ^3He-^4He liquid mixtures

    Get PDF
    We present variational calculations of the one-body density matrices and momentum distributions for ^3He-^4He mixtures in the zero temperature limit, in the framework of the correlated basis functions theory. The ground-state wave function contains two- and three-body correlations and the matrix elements are computed by (Fermi)Hypernetted Chain techniques. The dependence on the ^3He concentration (x_3) of the ^4He condensate fraction (n0(4))(n_0^{(4)}) and of the ^3He pole strength (Z_F) is studied along the P=0 isobar. At low ^3He concentration, the computed ^4He condensate fraction is not significantly affected by the ^3He statistics. Despite of the low x_3 values, Z_F is found to be quite smaller than that of the corresponding pure ^3He because of the strong ^3He-^4He correlations and of the overall, large total density \rho. A small increase of n0(4)n_0^{(4)} along x_3 is found, which is mainly due to the decrease of \rho respect to the pure ^4He phase.Comment: 23 pages, 7 postscript figures, Revte

    Dynamical instabilities of a resonator driven by a superconducting single-electron transistor

    Full text link
    We investigate the dynamical instabilities of a resonator coupled to a superconducting single-electron transistor (SSET) tuned to the Josephson quasiparticle (JQP) resonance. Starting from the quantum master equation of the system, we use a standard semiclassical approximation to derive a closed set of mean field equations which describe the average dynamics of the resonator and SSET charge. Using amplitude and phase coordinates for the resonator and assuming that the amplitude changes much more slowly than the phase, we explore the instabilities which arise in the resonator dynamics as a function of coupling to the SSET, detuning from the JQP resonance and the resonator frequency. We find that the locations (in parameter space) and sizes of the limit cycle states predicted by the mean field equations agree well with numerical solutions of the full master equation for sufficiently weak SSET-resonator coupling. The mean field equations also give a good qualitative description of the set of dynamical transitions in the resonator state that occur as the coupling is progressively increased.Comment: 23 pages, 6 Figures, Accepted for NJ

    Quantum Storage of Photonic Entanglement in a Crystal

    Full text link
    Entanglement is the fundamental characteristic of quantum physics. Large experimental efforts are devoted to harness entanglement between various physical systems. In particular, entanglement between light and material systems is interesting due to their prospective roles as "flying" and stationary qubits in future quantum information technologies, such as quantum repeaters and quantum networks. Here we report the first demonstration of entanglement between a photon at telecommunication wavelength and a single collective atomic excitation stored in a crystal. One photon from an energy-time entangled pair is mapped onto a crystal and then released into a well-defined spatial mode after a predetermined storage time. The other photon is at telecommunication wavelength and is sent directly through a 50 m fiber link to an analyzer. Successful transfer of entanglement to the crystal and back is proven by a violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality by almost three standard deviations (S=2.64+/-0.23). These results represent an important step towards quantum communication technologies based on solid-state devices. In particular, our resources pave the way for building efficient multiplexed quantum repeaters for long-distance quantum networks.Comment: 5 pages, 3 figures + supplementary information; fixed typo in ref. [36

    Description of recent large-qq neutron inclusive scattering data from liquid 4^4He

    Get PDF
    We report dynamical calculations for large-qq structure functions of liquid 4^4He at TT=1.6 and 2.3 K and compare those with recent MARI data. We extend those calculations far beyond the experimental range q\le 29\Ain in order to study the approach of the response to its asymptotic limit for a system with interactions having a strong short-range repulsion. We find only small deviations from theoretical 1/q1/q behavior, valid for smooth VV. We repeat an extraction by Glyde et al of cumulant coefficients from data. We argue that fits determine the single atom momentum distribution, but express doubt as to the extraction of meaningful Final State Interaction parameters.Comment: 37 pages, 13 postscript fig

    Nuclei, Superheavy Nuclei and Hypermatter in a chiral SU(3)-Modell

    Full text link
    A model based on chiral SU(3)-symmetry in nonlinear realisation is used for the investigation of nuclei, superheavy nuclei, hypernuclei and multistrange nuclear objects (so called MEMOs). The model works very well in the case of nuclei and hypernuclei with one Lambda-particle and rules out MEMOs. Basic observables which are known for nuclei and hypernuclei are reproduced satisfactorily. The model predicts Z=120 and N=172, 184 and 198 as the next shell closures in the region of superheavy nuclei. The calculations have been performed in self-consistent relativistic mean field approximation assuming spherical symmetry. The parameters were adapted to known nuclei.Comment: 19 pages, 11 figure

    Lambda-proton correlations in relativistic heavy ion collisions

    Full text link
    The prospect of using lambda-proton correlations to extract source sizes in relativistic heavy ion collisions is investigated. It is found that the strong interaction induces a large peak in the correlation function that provides more sensitive source size measurements than two-proton correlations under some circumstances. The prospect of using lambda-proton correlations to measure the time lag between lambda and proton emissions is also studied.Comment: 4 pages, 3 figure, revtex style. Two short paragraphs are added at referees' recommendations. Phys. Rev. Lett. in pres
    • …
    corecore