40 research outputs found

    Elimination of micropollutants in activated sludge reactors with a special focus on the effect of biomass concentration

    Get PDF
    This study aimed to investigate the effects of sludge retention time (SRT), hydraulic retention time (HRT), and biomass concentration (CTSS) in activated sludge systems on removal of various micropollutants (MPs), covering a wide spectrum of biodegradability. The influence of biomass concentration on the classical pseudo-first-order rate constant was verified. Results showed that the removal rate constants were affected by both the HRT and SRT. The enhancement of the SRT increased the removal of all the MPs except for two macrolide antibiotics. Application of a higher HRT also improved MP removal, as was expected from the measured removal rate constants. More interesting, our results indicated that, logically, the increase of biomass concentration (expressed as total suspended solids CTSS) from 3 to 5 gTSS L−1 significantly enhanced the removal rate of the highly and moderately degradable compounds. Conversely, a further increase to 8 gTSS L−1 produced only an unexpected moderate effect, showing that the rate was not proportional to biomass concentration, contrary to what is generally postulated. Therefore, the use of classical kinetic models is questionable, since they do not cover the entire range of boundary conditions in activated sludge systems. This work opens new research paths and suggests potential improvements to processe

    Effect of Modulation and Functionalization of UiO-66 Type MOFs on Their Surface Thermodynamic Properties and Lewis Acid-Base Behavior

    No full text
    In this study, we investigated the surface thermodynamic properties of four MOF structures of the UiO-66 series, by employing seven molecular models, a thermal model, and three other methods using the inverse gas chromatography (IGC) technique at infinite dilution. We first determined the effect of the modulation of UiO-66 by an acid (e.g., formic acid and acetic acid) and on the other hand, we studied the effect of the functionalization of the organic linker by an amine group (NH2) on their dispersive component of the surface energy and on their Lewis acid-base properties. We found that all the studied MOFs presented an amphoteric character with a strong acidity whose acidity/basicity ratio is greater than 1 using all the models and methods in IGC. Moreover, the introduction of a modulator such as acetic acid or formic acid in the synthesis of these MOFs increased the number of structural defects and therefore increased the acidity of these MOFs. Similarly, the functionalization of the MOF by the NH2 group leads to an increase in the basicity constant of the functionalized MOF while remaining smaller than their acidity constant. In addition, the use of acids as modulators and amine groups as functional groups resulted in an increase in the dispersive component of the surface energy of the MOFs. Finally, comparing the results obtained by the different models and methods and based on the increasing order of the acidity of each MOF, it was clear that the thermal model resulted in more exact and precise values than the others. Our findings pave the way for the design and development of new acid catalysts based on UiO-66 structures

    A Short Cost-Effective Methodology for Tracing the Temporal and Spatial Anthropogenic Inputs of Micropollutants into Ecosystems: Verified Mass-Balance Approach Applied to River Confluence and WWTP Release

    No full text
    The aim of this study is to develop a short cost-effective methodology for tracing the temporal and spatial anthropogenic inputs of micropollutants into ecosystems. The method involves a precise identification of the sampling sites based on various constraints: (1) one sampling site at each location to reduce the cost and the sampling time, (2) the sites are at sufficient mixing length from the release of micropollutants, and (3) they are identified with the aim to conduct mass balances. The methodology is applied to the identification, the quantification, and the distribution and transport of 21 emerging micropollutants in the Meurthe and Moselle river systems in the vicinity of the city of Nancy in France. The validity and reliability of the methodology is verified by using a mass-balance method at the confluence of the two rivers, where the mass fluxes upstream and downstream of the confluence compare well for nearly all the micropollutants. The methodology is employed to reveal mass fluxes of micropollutants discharged from the WWTP into the river water and point out the high efficiency of the drinking water treatment plant. The approach provides new insight into the identification of the sources of micropollutants in the rivers and the effects of hydrological and anthropogenic factors. The spatial anthropogenic inputs of micropollutants are highlighted in particular situations where discrepancies in the mass balance take place

    Is there a difference between surfactant-stabilised and Pickering emulsions?

    Get PDF
    What measurable physical properties allow one to distinguish surfactant-stabilised from Pickering emulsions? Whereas surfactants influence oil/water interfaces by lowering the oil/water interfacial tension, particles are assumed to have little effect on the interfacial tension. Here we perform interfacial tension (IFT) measurements on three different systems: (1) soybean oil and water with ethyl cellulose nanoparticles (ECNPs), (2) silicone oil and water with the globular protein bovine serum albumin (BSA), and (3) sodium dodecyl sulfate (SDS) solutions and air. The first two systems contain particles, while the third system contains surfactant molecules. We observe a significant decrease in interfacial tension with increasing particle/molecule concentration in all three systems. We analyse the surface tension data using the Gibbs adsorption isotherm and the Langmuir equation of state for the surface, resulting in surprisingly high adsorption densities for the particle-based systems. These seem to behave very much like the surfactant system: the decrease in tension is due to the presence of many particles at the interface, each with an adsorption energy of a few kBT. Dynamic interfacial tension measurements show that the systems are in equilibrium, and that the characteristic time scale for adsorption is much longer for particle-based systems than for surfactants, in line with their size difference. In addition, the particle-based emulsion is shown to be less stable against coalescence than the surfactant-stabilised emulsion. This leaves us with the conclusion that we are not able to make a clear distinction between the surfactant-stabilised and Pickering emulsions

    Is there a difference between surfactant-stabilised and Pickering emulsions?

    No full text
    What measurable physical properties allow one to distinguish surfactant-stabilised from Pickering emulsions? Whereas surfactants influence oil/water interfaces by lowering the oil/water interfacial tension, particles are assumed to have little effect on the interfacial tension. Here we perform interfacial tension (IFT) measurements on three different systems: (1) soybean oil and water with ethyl cellulose nanoparticles (ECNPs), (2) silicone oil and water with the globular protein bovine serum albumin (BSA), and (3) sodium dodecyl sulfate (SDS) solutions and air. The first two systems contain particles, while the third system contains surfactant molecules. We observe a significant decrease in interfacial tension with increasing particle/molecule concentration in all three systems. We analyse the surface tension data using the Gibbs adsorption isotherm and the Langmuir equation of state for the surface, resulting in surprisingly high adsorption densities for the particle-based systems. These seem to behave very much like the surfactant system: the decrease in tension is due to the presence of many particles at the interface, each with an adsorption energy of a few kBT. Dynamic interfacial tension measurements show that the systems are in equilibrium, and that the characteristic time scale for adsorption is much longer for particle-based systems than for surfactants, in line with their size difference. In addition, the particle-based emulsion is shown to be less stable against coalescence than the surfactant-stabilised emulsion. This leaves us with the conclusion that we are not able to make a clear distinction between the surfactant-stabilised and Pickering emulsions
    corecore