31,989 research outputs found

    From 3D Point Clouds to Pose-Normalised Depth Maps

    Get PDF
    We consider the problem of generating either pairwise-aligned or pose-normalised depth maps from noisy 3D point clouds in a relatively unrestricted poses. Our system is deployed in a 3D face alignment application and consists of the following four stages: (i) data filtering, (ii) nose tip identification and sub-vertex localisation, (iii) computation of the (relative) face orientation, (iv) generation of either a pose aligned or a pose normalised depth map. We generate an implicit radial basis function (RBF) model of the facial surface and this is employed within all four stages of the process. For example, in stage (ii), construction of novel invariant features is based on sampling this RBF over a set of concentric spheres to give a spherically-sampled RBF (SSR) shape histogram. In stage (iii), a second novel descriptor, called an isoradius contour curvature signal, is defined, which allows rotational alignment to be determined using a simple process of 1D correlation. We test our system on both the University of York (UoY) 3D face dataset and the Face Recognition Grand Challenge (FRGC) 3D data. For the more challenging UoY data, our SSR descriptors significantly outperform three variants of spin images, successfully identifying nose vertices at a rate of 99.6%. Nose localisation performance on the higher quality FRGC data, which has only small pose variations, is 99.9%. Our best system successfully normalises the pose of 3D faces at rates of 99.1% (UoY data) and 99.6% (FRGC data)

    The Area Quantum and Snyder Space

    Get PDF
    We show that in the Snyder space the area of the disc and of the sphere can be quantized. It is also shown that the area spectrum of the sphere can be related to the Bekenstein conjecture for the area spectrum of a black hole horizon.Comment: 7 pages, in Press, Physics Letters

    Comparison of Absorption, Fluorescence, and Polarization Spectroscopy of Atomic Rubidium

    Get PDF
    An ongoing spectroscopic investigation of atomic rubidium utilizes a two-photon, single-laser excitation process. Transitions accessible with our tunable laser include 5P1/2 (F ′ ) ← 5S1/2 (F) and 5P3/2 (F ′ ) ← 5S1/2 (F). The laser is split into a pump and probe beam to allow for Doppler-free measurements of transitions between hyperfine levels. The pump and probe beams are overlapped in a counter-propagating geometry and the laser frequency scans over a transition. Absorption, fluorescence and polarization spectroscopy techniques are applied to this basic experimental setup. The temperature of the vapor cell and the power of the pump and probe beams have been varied to explore line broadening effects and signal-to-noise of each technique. This humble setup will hopefully grow into a more robust experimental arrangement in which double resonance, two-laser excitations are used to explore hyperfine state changing collisions between rubidium atoms and noble gas atoms. Rb-noble gas collisions can transfer population between hyperfine levels, such as 5P3/2 (F ′ = 3) Collision ←− 5P3/2 (F ′ = 2), and the probe beam couples 7S1/2 (F ′′ = 2) ← 5P3/2 (F ′ = 3). Polarization spectroscopy signal depends on the rate of population transfer due to the collision as well as maintaining the orientation created by the pump laser. Fluorescence spectroscopy relies only on transfer of population due to the collision. Comparison of these techniques yields information regarding the change of the magnetic sublevels, mF , during hyperfine state changing collisions

    Extending the ADM formalism to Weyl geometry

    Full text link
    In order to treat quantum cosmology in the framework of Weyl spacetimes we take the first step of extending the Arnowitt-Deser-Misner formalism to Weyl geometry. We then obtain an expression of the curvature tensor in terms of spatial quantities by splitting spacetime in (3+1)-dimensional form. We next write the Lagrangian of the gravitation field based in Weyl-type gravity theory. We extend the general relativistic formalism in such a way that it can be applied to investigate the quantum cosmology of models whose spacetimes are endowed with a Weyl geometrical structure.Comment: 10 page

    The Effects of Clay on Glycerol/Carboxylic Acid Polymerization: Implications of Mineral Controls In Prebiotic Chemistry

    Get PDF
    Proto-enzymatic catalysis on early Earth is an important consideration in prebiotic chemistry research as it leads to the understanding of the emergence of the metabolic reaction networks. Contemporary enzymes are comprised of either organic or inorganic factors scaffolded by globular protein structure whereas we consider hyperbranched polyesters as a possible extant scaffold that is easier assembled than the peptide one. The goals of this project are to consider prebiotically plausible starting materials for such structure formation utilizing a subset of conditions for polymer synthesis involving the presence of mineral surfaces as well as temperature and hydration differential. As likely candidates for the formation of hyperbranched polyesters on early Earth, reactions of glycerol with certain carboxylic acids (citric, tartaric, succinic, and fumaric) were studied. Two variants of the clay montmorillonite (KSF and K10) were introduced into the polymerization milieu to observe its effects in the process. To monitor polymer growth, their weights were taken at hourly intervals to ascertain water loss due to the condensation-dehydration reaction of the polyesterification. To characterize the resulting polymers’ structures, acid-base titrations were performed to estimate the number of acid groups esterified during the experiment. Size exclusion chromatography coupled with mass spectrometry was also used to elucidate the polyester structure and degree of branching. The presence of the clays was found not to affect the number of ester bonds formed or the kinetics of the polymerization product. The addition of clay, however, has been shown to favor the formation certain polymer conformations. These preliminary results indicate a potential selective pressure that clay minerals introduce into the chemical evolution of the hyperbranched polyester enzyme scaffolds

    Transient gamma-ray emission from Cygnus X-3

    Full text link
    The high-mass microquasar Cygnus X-3 has been recently detected in a flaring state by the gamma-ray satellites Fermi and Agile. In the present contribution, we study the high-energy emission from Cygnus X-3 through a model based on the interaction of clumps from the Wolf-Rayet wind with the jet. The clumps inside the jet act as obstacles in which shocks are formed leading to particle acceleration and non-thermal emission. We model the high energy emission produced by the interaction of one clump with the jet and briefly discus the possibility of many clumps interacting with the jet. From the characteristics of the considered scenario, the produced emission could be flare-like due to discontinuous clump penetration, with the GeV long-term activity explained by changes in the wind properties.Comment: Contribution to the proceedings of the 25th Texas Symposium on Relativistic Astrophysics - TEXAS 2010, December 06-10, Heidelberg, German

    High-energy flares from jet-clump interactions

    Get PDF
    High-mass microquasars are binary systems composed by a massive star and a compact object from which relativistic jets are launched. Regarding the companion star, observational evidence supports the idea that winds of hot stars are formed by clumps. Then, these inhomogeneities may interact with the jets producing a flaring activity. In the present contribution we study the interaction between a jet and a clump of the stellar wind in a high-mass microquasar. This interaction produces a shock in the jet, where particles may be accelerated up to relativistic energies. We calculate the spectral energy distributions of the dominant non-thermal processes: synchrotron radiation, inverse Compton scattering, and proton-proton collisions. Significant levels of X- and gamma-ray emission are predicted, with luminosities in the different domains up to ~ 10^{34} - 10^{35} erg/s on a timescale of about ~ 1 h. Finally, jet-clump interactions in high-mass microquasars could be detectable at high energies. These phenomena may be behind the fast TeV variability found in some high-mass X-ray binary systems, such as Cygnus X-1, LS 5039 and LS I+61 303. In addition, our model can help to derive information on the properties of jets and clumpy winds.Comment: Proceeding of the conference "High Energy Phenomena in Massive Stars". Jaen (Spain), 2-5 February 200

    Gamma rays from cloud penetration at the base of AGN jets

    Full text link
    Dense and cold clouds seem to populate the broad line region surrounding the central black hole in AGNs. These clouds could interact with the AGN jet base and this could have observational consequences. We want to study the gamma-ray emission produced by these jet-cloud interactions, and explore under which conditions this radiation would be detectable. We investigate the hydrodynamical properties of jet-cloud interactions and the resulting shocks, and develop a model to compute the spectral energy distribution of the emission generated by the particles accelerated in these shocks. We discuss our model in the context of radio-loud AGNs, with applications to two representative cases, the low-luminous Centaurus A, and the powerful 3C 273. Some fraction of the jet power can be channelled to gamma-rays, which would be likely dominated by synchrotron self-Compton radiation, and show typical variability timescales similar to the cloud lifetime within the jet, which is longer than several hours. Many clouds can interact with the jet simultaneously leading to fluxes significantly higher than in one interaction, but then variability will be smoothed out. Jet-cloud interactions may produce detectable gamma-rays in non-blazar AGNs, of transient nature in nearby low-luminous sources like Cen A, and steady in the case of powerful objects of FR II type.Comment: Accepted for publication in A&A (9 pages, 7 figures

    Modeling TeV gamma-rays from LS 5039: An active OB star at the extreme

    Full text link
    Perhaps the most extreme examples of "Active OB stars" are the subset of high-mass X-ray binaries -- consisting of an OB star plus compact companion -- that have recently been observed by Fermi and ground-based Cerenkov telescopes like HESS to be sources of very high energy (VHE; up to 30 TeV) gamma-rays. This paper focuses on the prominent gamma-ray source, LS5039, which consists of a massive O6.5V star in a 3.9-day-period, mildly elliptical (e = 0.24) orbit with its companion, assumed here to be a black-hole or unmagnetized neutron star. Using 3-D SPH simulations of the Bondi-Hoyle accretion of the O-star wind onto the companion, we find that the orbital phase variation of the accretion follows very closely the simple Bondi-Hoyle-Lyttleton (BHL) rate for the local radius and wind speed. Moreover, a simple model, wherein intrinsic emission of gamma-rays is assumed to track this accretion rate, reproduces quite well Fermi observations of the phase variation of gamma-rays in the energy range 0.1-10 GeV. However for the VHE (0.1-30 TeV) radiation observed by the HESS Cerenkov telescope, it is important to account also for photon-photon interactions between the gamma-rays and the stellar optical/UV radiation, which effectively attenuates much of the strong emission near periastron. When this is included, we find that this simple BHL accretion model also quite naturally fits the HESS light curve, thus making it a strong alternative to the pulsar-wind-shock models commonly invoked to explain such VHE gamma-ray emission in massive-star binaries.Comment: To appear in "Active OB Stars: Structure, Evolution, Mass Loss & Critical Limits", Proceedings of IAUS 272, held July 2010 in Paris, France. 7 pages; 3 figures. This version 2 corrects an alignment error in figure
    corecore