67 research outputs found

    Tail myology and flight behaviour: Differences between caracaras, falcons and forest falcons (Aves, Falconiformes)

    Get PDF
    Caracaras, falcons and forest falcons, which are representative of the three subfamilies of the family Falconidae, have different flight behaviour. Since, during flight, the tail works in coordination with the wings, the tail muscles could be indicative of the type of flight behaviour. The aim of this work was to describe in detail the little-known tail muscles of the Falconidae and to explore their possible association with this different behaviour, by using the muscle mass as an indicator. To this end, the tail muscles of 18 specimens representing the three subfamilies of Falconidae were dissected, weighed and their percentage to the body mass calculated. The possible differences in tail muscle mass between Falconinae and Polyborinae were explored with a Bayesian statistical approach. In all species, the muscles depressor caudae and levator caudae had the highest mass values (0.028%–0.329% and 0.120%–0.274%, respectively), in accordance with the key movements performed during flight, that is, the tail depression and elevation. The total muscle masses of Falconinae and those of Polyborinae were significantly different (p < 0.05). This difference can be related with the different flight behaviour of falcons and caracaras, that is, fast and erratic flight, respectively.Fil: Mosto, María Clelia. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Paleontología Vertebrados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Picasso, Mariana Beatriz Julieta. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Paleontología Vertebrados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Montes, Martin Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; ArgentinaFil: Krone, Oliver. Leibniz Institute For Zoo And Wildlife Research.; Alemani

    Effect of diazinon on life stages and resting egg hatchability of rotifer Brachionus plicatilis

    Get PDF
    The effects of organophosphate pesticide, diazinon, on life history parameters and hatchability of resting eggs of rotifer Brachionus plicalitis were assessed. Newly hatched (<1h-old) neonates were individually cultured in six varying concentrations (0/control, 0.1, 1.0, 2.5, 5.0 and 10.0 mg/L) of diazinon. The life history parameters such as time (h) the rotifers bear first egg and release first neonate, reproductive period, net reproductive rate, mixis, intrinsic rate of population increase, and life span were evaluated. Results showed that among the life history parameters, the time the rotifers took to release neonates is the most sensitive, giving the lowest EC50 value of 1.24 mg/L. The fecundity of maternal females, amictic and mictic daughters was also investigated. Rotifers exposed to 10.0 mg/L produced significantly fewer amictic daughters, and at this concentration, rotifers did not produce any mictic daughter. At 5.0 mg/L, the number of male offspring was significantly lower than the control. Furthermore, the hatchability of resting eggs produced by the rotifers was evaluated when exposed to diazinon: from birth until they produced resting eggs (early development); during late developmental stage of resting eggs (before diapause); and during diapausing stage. The hatchability of the resting eggs was not affected when exposure was timed at late developmental and diapausing stages. Overall results showed that even though amictic females reproduced normally in the presence of low concentration of diazinon, sexual reproduction is severely affected, especially the hatchability of resting eggs when the exposure was timed on its early developmental stages. This provides another evidence that production of resting eggs is particularly sensitive to the presence of xenobiotics in the environment

    Bird-Like Anatomy, Posture, and Behavior Revealed by an Early Jurassic Theropod Dinosaur Resting Trace

    Get PDF
    BACKGROUND: Fossil tracks made by non-avian theropod dinosaurs commonly reflect the habitual bipedal stance retained in living birds. Only rarely-captured behaviors, such as crouching, might create impressions made by the hands. Such tracks provide valuable information concerning the often poorly understood functional morphology of the early theropod forelimb. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe a well-preserved theropod trackway in a Lower Jurassic ( approximately 198 million-year-old) lacustrine beach sandstone in the Whitmore Point Member of the Moenave Formation in southwestern Utah. The trackway consists of prints of typical morphology, intermittent tail drags and, unusually, traces made by the animal resting on the substrate in a posture very similar to modern birds. The resting trace includes symmetrical pes impressions and well-defined impressions made by both hands, the tail, and the ischial callosity. CONCLUSIONS/SIGNIFICANCE: The manus impressions corroborate that early theropods, like later birds, held their palms facing medially, in contrast to manus prints previously attributed to theropods that have forward-pointing digits. Both the symmetrical resting posture and the medially-facing palms therefore evolved by the Early Jurassic, much earlier in the theropod lineage than previously recognized, and may characterize all theropods

    The Predatory Ecology of Deinonychus and the Origin of Flapping in Birds

    Get PDF
    Most non-avian theropod dinosaurs are characterized by fearsome serrated teeth and sharp recurved claws. Interpretation of theropod predatory ecology is typically based on functional morphological analysis of these and other physical features. The notorious hypertrophied ‘killing claw’ on pedal digit (D) II of the maniraptoran theropod Deinonychus (Paraves: Dromaeosauridae) is hypothesized to have been a predatory adaptation for slashing or climbing, leading to the suggestion that Deinonychus and other dromaeosaurids were cursorial predators specialized for actively attacking and killing prey several times larger than themselves. However, this hypothesis is problematic as extant animals that possess similarly hypertrophied claws do not use them to slash or climb up prey. Here we offer an alternative interpretation: that the hypertrophied D-II claw of dromaeosaurids was functionally analogous to the enlarged talon also found on D-II of extant Accipitridae (hawks and eagles; one family of the birds commonly known as “raptors”). Here, the talon is used to maintain grip on prey of subequal body size to the predator, while the victim is pinned down by the body weight of the raptor and dismembered by the beak. The foot of Deinonychus exhibits morphology consistent with a grasping function, supportive of the prey immobilisation behavior model. Opposite morphological trends within Deinonychosauria (Dromaeosauridae + Troodontidae) are indicative of ecological separation. Placed in context of avian evolution, the grasping foot of Deinonychus and other terrestrial predatory paravians is hypothesized to have been an exaptation for the grasping foot of arboreal perching birds. Here we also describe “stability flapping”, a novel behaviour executed for positioning and stability during the initial stages of prey immobilisation, which may have been pivotal to the evolution of the flapping stroke. These findings overhaul our perception of predatory dinosaurs and highlight the role of exaptation in the evolution of novel structures and behaviours

    Two Antarctic penguin genomes reveal insights into their evolutionary history and molecular changes related to the Antarctic environment

    Get PDF
    BACKGROUND: Penguins are flightless aquatic birds widely distributed in the Southern Hemisphere. The distinctive morphological and physiological features of penguins allow them to live an aquatic life, and some of them have successfully adapted to the hostile environments in Antarctica. To study the phylogenetic and population history of penguins and the molecular basis of their adaptations to Antarctica, we sequenced the genomes of the two Antarctic dwelling penguin species, the AdĂŠlie penguin [Pygoscelis adeliae] and emperor penguin [Aptenodytes forsteri]. RESULTS: Phylogenetic dating suggests that early penguins arose ~60 million years ago, coinciding with a period of global warming. Analysis of effective population sizes reveals that the two penguin species experienced population expansions from ~1 million years ago to ~100 thousand years ago, but responded differently to the climatic cooling of the last glacial period. Comparative genomic analyses with other available avian genomes identified molecular changes in genes related to epidermal structure, phototransduction, lipid metabolism, and forelimb morphology. CONCLUSIONS: Our sequencing and initial analyses of the first two penguin genomes provide insights into the timing of penguin origin, fluctuations in effective population sizes of the two penguin species over the past 10 million years, and the potential associations between these biological patterns and global climate change. The molecular changes compared with other avian genomes reflect both shared and diverse adaptations of the two penguin species to the Antarctic environment

    How to combat cyanobacterial blooms: strategy toward preventive lake restoration and reactive control measures

    Full text link

    A Gondwanan origin of passerine birds supported by DNA sequences of the endemic New Zealand wrens

    No full text
    Zoogeographic, palaeontological and biochemical data support a Southern Hemisphere origin for passerine birds, while accumulating molecular data suggest that most extant avian orders originated in the mid-Late Cretaceous. We obtained DNA sequence data from the nuclear c-myc and RAG-1 genes of the major passerine groups and here we demonstrate that the endemic New Zealand wrens (Acanthisittidae) are the sister taxon to all other extant passerines, supporting a Gondwanan origin and early radiation of passerines. We propose that (i) the acanthisittids were isolated when New Zealand separated from Gondwana (ca. 82-85 Myr ago), (ii) suboscines, in turn, were derived from an ancestral lineage that inhabited western Gondwana, and (iii) the ancestors of the oscines (songbirds) were subsequently isolated by the separation of Australia from Antarctica. The later spread of passerines into the Northern Hemisphere reflects the northward migration of these former Gondwanan elements.Per G. P. Ericson, Les Christidis, Alan Cooper, Martin Irestedt, Jennifer Jackson, Ulf S. Johansson and Janette A. Norma
    • …
    corecore