709 research outputs found

    Plasma depletion layer: its dependence on solar wind conditions and the Earth dipole tilt

    Get PDF
    The plasma depletion layer (PDL) is a layer on the sunward side of the magnetopause with lower plasma density and higher magnetic field compared to their corresponding upstream magnetosheath values. It is believed that the PDL is controlled jointly by conditions in the solar wind plasma and the (IMF). In this study, we extend our former model PDL studies by systematically investigating the dependence of the PDL and the slow mode front on solar wind conditions using global MHD simulations. We first point out the difficulties for the depletion factor method and the plasma <i>β</i> method for defining the outer boundary of the plasma depletion layer. We propose to use the N/B ratio to define the PDL outer boundary, which can give the best description of flux tube depletion. We find a strong dependence of the magnetosheath environment on the solar wind magnetosonic Mach number. A difference between the stagnation point and the magnetopause derived from the open-closed magnetic field boundary is found. We also find a strong and complex dependence of the PDL and the slow mode front on the IMF <i>B<sub>z</sub></i>. A density structure right inside the subsolar magnetopause for higher IMF <i>B<sub>z</sub></i>;might be responsible for some of this dependence. Both the IMF tilt and clock angles are found to have little influence on the magnetosheath and the PDL structures. However, the IMF geometry has a much stronger influence on the slow mode fronts in the magnetosheath. Finally, the Earth dipole tilt is found to play a minor role for the magnetosheath geometry and the PDL along the Sun-Earth line. A complex slow mode front geometry is found for cases with different Earth dipole tilts. Comparisons between our results with those from some former studies are conducted, and consistencies and inconsistencies are found.<br><br> <b>Key words.</b> Magnetospheric physics (magnetosheath, solar wind-magnetosphere interactions) – Space plasma physics (numerical simulation studies

    Plasma depletion layer: Magnetosheath flow structure and forces

    No full text
    International audienceThe plasma depletion layer (PDL) is a layer on the sunward side of the magnetopause with lower plasma density and higher magnetic field compared to the corresponding upstream magnetosheath values. In a previous study, we have validated the UCLA global (MHD) model in studying the formation of the PDL by comparing model results, using spacecraft solar wind observations as the driver, with in situ PDL observations. In this study, we extend our previous work and examine the detailed MHD forces responsible for the PDL formation. We argue that MHD models, instead of gasdynamic models, should be used to study the PDL, because gasdynamic models cannot produce the PDL on the sunward side of the magnetopause. For northward (IMF), flux tube depletion occurs in almost all the subsolar magnetosheath. However, the streamlines closest to the magnetopause and the stagnation line show the greatest depletion. The relative strength of the various MHD forces changes along these streamlines. Forces along a flux tube at different stages of its depletion in the magnetosheath are analyzed. We find that a strong plasma pressure gradient force along the magnetic field at the bow shock and a pressure gradient force along the flux tube within the magnetosheath usually exist pushing plasma away from the equatorial plane to deplete the flux tube. More complex force structures along the flux tube are found close to the magnetopause. This new, more detailed description of flux tube depletion is compared with the results of Zwan and Wolf (1976) and differences are found. Near the magnetopause, the pressure gradient force along the flux tube either drives plasma away from the equatorial plane or pushes plasma toward the equatorial plane. As a result, a slow mode structure is seen along the flux tube which might be responsible for the observed two-layered slow mode structures

    Machine learning for targeted display advertising: Transfer learning in action

    Get PDF
    This paper presents a detailed discussion of problem formulation and data representation issues in the design, deployment, and operation of a massive-scale machine learning system for targeted display advertising. Notably, the machine learning system itself is deployed and has been in continual use for years, for thousands of advertising campaigns (in contrast to simply having the models from the system be deployed). In this application, acquiring sufficient data for training from the ideal sampling distribution is prohibitively expensive. Instead, data are drawn from surrogate domains and learning tasks, and then transferred to the target task. We present the design of this multistage transfer learning system, highlighting the problem formulation aspects. We then present a detailed experimental evaluation, showing that the different transfer stages indeed each add value. We next present production results across a variety of advertising clients from a variety of industries, illustrating the performance of the system in use. We close the paper with a collection of lessons learned from the work over half a decade on this complex, deployed, and broadly used machine learning system.Statistics Working Papers Serie

    Pharmacokinetics of propofol in severely obese surgical patients

    Get PDF
    BACKGROUND: Existing PK models of propofol include sparse data from very obese patients. The aim of this study was to develop a PK model based on standardised surgical conditions and spanning from normal-weight up to, and including, a high number of very obese patients. METHODS: Adult patients scheduled for laparoscopic cholecystectomy or bariatric surgery were studied. Anaesthesia was induced with propofol 2 mg/kg adjusted body weight over 2 min followed by 6 mg/kg/h adjusted body weight over 30 min. For the remainder of the operation anaesthesia was maintained with sevoflurane. Remifentanil was dosed according to clinical need. Eight arterial samples were drawn in a randomised block sampling regimen over a span of 24 h. Time-concentration data were analysed by population PK modelling using non-linear mixed-effects modelling. RESULTS: Four hundred and seventy four serum propofol concentrations were collected from 69 patients aged 19-60 years with a BMI 21.6-67.3 kg/m2 . Twenty one patients had a BMI above 50 kg/m2 . A 3-compartment PK model was produced wherein three different body weight descriptors and sex were included as covariates in the final model. Total body weight was found to be a covariate for clearance and Q3; lean body weight for V1, V2 and Q2; predicted normal weight for V3 and sex for V1. The fixed allometric exponent of 0.75 applied to all clearance parameters improved the performance of the model. Accuracy and precision were 1.4% and 21.7% respectively in post-hoc performance evaluation. CONCLUSION: We have developed a new PK model of propofol that is suitable for all adult weight classes. Specifically, it is based on data from an unprecedented number of individuals with very high BMI

    Resonance ionization spectroscopy of thorium isotopes - towards a laser spectroscopic identification of the low-lying 7.6 eV isomer of Th-229

    Full text link
    In-source resonance ionization spectroscopy was used to identify an efficient and selective three step excitation/ionization scheme of thorium, suitable for titanium:sapphire (Ti:sa) lasers. The measurements were carried out in preparation of laser spectroscopic investigations for an identification of the low-lying Th-229m isomer predicted at 7.6 +- 0.5 eV above the nuclear ground state. Using a sample of Th-232, a multitude of optical transitions leading to over 20 previously unknown intermediate states of even parity as well as numerous high-lying odd parity auto-ionizing states were identified. Level energies were determined with an accuracy of 0.06 cm-1 for intermediate and 0.15 cm-1 for auto-ionizing states. Using different excitation pathways an assignment of total angular momenta for several energy levels was possible. One particularly efficient ionization scheme of thorium, exhibiting saturation in all three optical transitions, was studied in detail. For all three levels in this scheme, the isotope shifts of the isotopes Th-228, Th-229, and Th-230 relative to Th-232 were measured. An overall efficiency including ionization, transport and detection of 0.6 was determined, which was predominantly limited by the transmission of the mass spectrometer ion optics

    Breakdown of the Isobaric Multiplet Mass Equation for the A = 20 and 21 Multiplets

    Full text link
    Using the Penning trap mass spectrometer TITAN, we performed the first direct mass measurements of 20,21Mg, isotopes that are the most proton-rich members of the A = 20 and A = 21 isospin multiplets. These measurements were possible through the use of a unique ion-guide laser ion source, a development that suppressed isobaric contamination by six orders of magnitude. Compared to the latest atomic mass evaluation, we find that the mass of 21Mg is in good agreement but that the mass of 20Mg deviates by 3{\sigma}. These measurements reduce the uncertainties in the masses of 20,21Mg by 15 and 22 times, respectively, resulting in a significant departure from the expected behavior of the isobaric multiplet mass equation in both the A = 20 and A = 21 multiplets. This presents a challenge to shell model calculations using either the isospin non-conserving USDA/B Hamiltonians or isospin non-conserving interactions based on chiral two- and three-nucleon forces.Comment: 5 pages, 2 figure

    Three-dimensional magnetic flux rope structure formed by multiple sequential X-line reconnection at the magnetopause

    No full text
    On 14 June 2007, four Time History of Events and Macroscale Interactions during Substorms spacecraft observed a flux transfer event (FTE) on the dayside magnetopause, which has been previously proved to be generated by multiple, sequential X-line reconnection (MSXR) in a 2-D context. This paper reports a further study of the MSXR event to show the 3-D viewpoint based on additional measurements. The 3-D structure of the FTE flux rope across the magnetospheric boundary is obtained on the basis of multipoint measurements taken on both sides of the magnetopause. The flux rope's azimuthally extended section is found to lie approximately on the magnetopause surface and parallel to the X-line direction; while the axis of the magnetospheric branch is essentially along the local unperturbed magnetospheric field lines. In the central region of the flux rope, as distinct from the traditional viewpoint, we find from the electron distributions that two types of magnetic field topology coexist: opened magnetic field lines connecting the magnetosphere and the magnetosheath and closed field lines connecting the Southern and Northern hemispheres. We confirm, therefore, for the first time, the characteristic feature of the 3-D reconnected magnetic flux rope, formed through MSXR, through a determination of the field topology and the plasma distributions within the flux rope. Knowledge of the complex geometry of FTE flux ropes will improve our understanding of solar wind-magnetosphere interaction.Astronomy & AstrophysicsSCI(E)5ARTICLE51904-191111
    corecore