3,936 research outputs found

    Microcavity quantum-dot systems for non-equilibrium Bose-Einstein condensation

    Get PDF
    We review the practical conditions required to achieve a non-equilibrium BEC driven by quantum dynamics in a system comprising a microcavity field mode and a distribution of localised two-level systems driven to a step-like population inversion profile. A candidate system based on eight 3.8nm layers of In(0.23)Ga(0.77)As in GaAs shows promising characteristics with regard to the total dipole strength which can be coupled to the field mode.Comment: 4 pages, 4 figures, to be published in J. Phys. Conf. Ser. for QD201

    Quantum state preparation in semiconductor dots by adiabatic rapid passage

    Full text link
    Preparation of a specific quantum state is a required step for a variety of proposed practical uses of quantum dynamics. We report an experimental demonstration of optical quantum state preparation in a semiconductor quantum dot with electrical readout, which contrasts with earlier work based on Rabi flopping in that the method is robust with respect to variation in the optical coupling. We use adiabatic rapid passage, which is capable of inverting single dots to a specified upper level. We demonstrate that when the pulse power exceeds a threshold for inversion, the final state is independent of power. This provides a new tool for preparing quantum states in semiconductor dots and has a wide range of potential uses.Comment: 4 pages, 4 figure

    Neutrophil gelatinase-associated lipocalin: its response to hypoxia and association with acute mountain sickness.

    Get PDF
    Acute Mountain Sickness (AMS) is a common clinical challenge at high altitude (HA). A point-of-care biochemical marker for AMS could have widespread utility. Neutrophil gelatinase-associated lipocalin (NGAL) rises in response to renal injury, inflammation and oxidative stress. We investigated whether NGAL rises with HA and if this rise was related to AMS, hypoxia or exercise. NGAL was assayed in a cohort (n = 22) undertaking 6 hours exercise at near sea-level (SL); a cohort (n = 14) during 3 hours of normobaric hypoxia (FiO2 11.6%) and on two trekking expeditions (n = 52) to over 5000 m. NGAL did not change with exercise at SL or following normobaric hypoxia. During the trekking expeditions NGAL levels (ng/ml, mean ± sd, range) rose significantly (P < 0.001) from 68 ± 14 (60-102) at 1300 m to 183 ± 107 (65-519); 143 ± 66 (60-315) and 150 ± 71 (60-357) at 3400 m, 4270 m and 5150 m respectively. At 5150 m there was a significant difference in NGAL between those with severe AMS (n = 7), mild AMS (n = 16) or no AMS (n = 23): 201 ± 34 versus 171 ± 19 versus 124 ± 12 respectively (P = 0.009 for severe versus no AMS; P = 0.026 for mild versus no AMS). In summary, NGAL rises in response to prolonged hypobaric hypoxia and demonstrates a relationship to the presence and severity of AMS

    Transition from electron accumulation to depletion at InGaN surfaces

    Get PDF
    The composition dependence of the Fermi-level pinning at the oxidized (0001) surfaces of n-type InxGa1−xN films (0<=x<=1) is investigated using x-ray photoemission spectroscopy. The surface Fermi-level position varies from high above the conduction band minimum (CBM) at InN surfaces to significantly below the CBM at GaN surfaces, with the transition from electron accumulation to depletion occurring at approximately x=0.3. The results are consistent with the composition dependence of the band edges with respect to the charge neutrality level

    Band anticrossing in GaNxSb1–x

    Get PDF
    Fourier transform infrared absorption measurements are presented from the dilute nitride semiconductor GaNSb with nitrogen incorporations between 0.2% and 1.0%. The divergence of transitions from the valence band to E– and E+ can be seen with increasing nitrogen incorporation, consistent with theoretical predictions. The GaNSb band structure has been modeled using a five-band k·p Hamiltonian and a band anticrossing fitting has been obtained using a nitrogen level of 0.78 eV above the valence band maximum and a coupling parameter of 2.6 eV

    Long-term variations in the net inflow record for Lake Malawi

    Get PDF
    Lake Malawi is the third largest lake in Africa and plays an important role in water supply, hydropower generation, agriculture and fisheries in the region. Lake level observations started in the 1890s and anecdotal evidence of variations dates back to the early 1800s. A chronology of lake level and outflow variations is presented together with updated estimates for the net inflow to the lake. The inflow series and selected rainfall records were also analysed using an unobserved component approach and, although there was little evidence of long-term trends, there was some indication of increasing interannual variability in recent decades. A weak quasi-periodic behaviour was also noted with a period of approximately 4–8 years. The results provide useful insights into the severity of drought and flood events in the region since the 1890s and the potential for seasonal forecasting of lake levels and outflows

    Long-term variations in the net inflow record for Lake Malawi

    Get PDF
    Lake Malawi is the third largest lake in Africa and plays an important role in water supply, hydropower generation, agriculture and fisheries in the region. Lake level observations started in the 1890s and anecdotal evidence of variations dates back to the early 1800s. A chronology of lake level and outflow variations is presented together with updated estimates for the net inflow to the lake. The inflow series and selected rainfall records were also analysed using an unobserved component approach and, although there was little evidence of long-term trends, there was some indication of increasing interannual variability in recent decades. A weak quasi-periodic behaviour was also noted with a period of approximately 4–8 years. The results provide useful insights into the severity of drought and flood events in the region since the 1890s and the potential for seasonal forecasting of lake levels and outflows

    Federating distributed clinical data for the prediction of adverse hypotensive events

    Get PDF
    The ability to predict adverse hypotensive events, where a patient's arterial blood pressure drops to abnormally low (and dangerous) levels, would be of major benefit to the fields of primary and secondary health care, and especially to the traumatic brain injury domain. A wealth of data exist in health care systems providing information on the major health indicators of patients in hospitals (blood pressure, temperature, heart rate, etc.). It is believed that if enough of these data could be drawn together and analysed in a systematic way, then a system could be built that will trigger an alarm predicting the onset of a hypotensive event over a useful time scale, e.g. half an hour in advance. In such circumstances, avoidance measures can be taken to prevent such events arising. This is the basis for the Avert-IT project (http://www.avert-it.org), a collaborative EU-funded project involving the construction of a hypotension alarm system exploiting Bayesian neural networks using techniques of data federation to bring together the relevant information for study and system development

    The gravitational wave rocket

    Get PDF
    Einstein's equations admit solutions corresponding to photon rockets. In these a massive particle recoils because of the anisotropic emission of photons. In this paper we ask whether rocket motion can be powered only by the emission of gravitational waves. We use the double series approximation method and show that this is possible. A loss of mass and gain in momentum arise in the second approximation because of the emission of quadrupole and octupole waves.Comment: 10 pages LaTe

    Band gap reduction in GaNSb alloys due to the anion mismatch

    Get PDF
    The structural and optoelectronic properties in GaNxSb1–x alloys (0<=x<0.02) grown by molecular-beam epitaxy on both GaSb substrates and AlSb buffer layers on GaAs substrates are investigated. High-resolution x-ray diffraction (XRD) and reciprocal space mapping indicate that the GaNxSb1–x epilayers are of high crystalline quality and the alloy composition is found to be independent of substrate, for identical growth conditions. The band gap of the GaNSb alloys is found to decrease with increasing nitrogen content from absorption spectroscopy. Strain-induced band-gap shifts, Moss-Burstein effects, and band renormalization were ruled out by XRD and Hall measurements. The band-gap reduction is solely due to the substitution of dilute amounts of highly electronegative nitrogen for antimony, and is greater than observed in GaNAs with the same N content
    • 

    corecore