14,657 research outputs found
Majorana-based fermionic quantum computation
Because Majorana zero modes store quantum information non-locally, they are
protected from noise, and have been proposed as a building block for a quantum
computer. We show how to use the same protection from noise to implement
universal fermionic quantum computation. Our architecture requires only two
Majoranas to encode a fermionic quantum degree of freedom, compared to
alternative implementations which require a minimum of four Majoranas for a
spin quantum degree of freedom. The fermionic degrees of freedom support both
unitary coupled cluster variational quantum eigensolver and quantum phase
estimation algorithms, proposed for quantum chemistry simulations. Because we
avoid the Jordan-Wigner transformation, our scheme has a lower overhead for
implementing both of these algorithms, and the simulation of Trotterized
Hubbard Hamiltonian in time per unitary step. We finally
demonstrate magic state distillation in our fermionic architecture, giving a
universal set of topologically protected fermionic quantum gates.Comment: 4 pages + 4 page appendix, 4 figures, 2 table
Using Swift observations of prompt and afterglow emission to classify GRBs
We present an analysis of early BAT and XRT data for 107 gamma--ray bursts
(GRBs) observed by the Swift satellite. We use these data to examine the
behaviour of the X-ray light curve and propose a classification scheme for GRBs
based on this behaviour. As found for previous smaller samples, the earliest
X-ray light curve can be well described by an exponential which relaxes into a
power law, often with flares superimposed. The later emission is well fit using
a similar functional form and we find that these two functions provide a good
description of the entire X-ray light curve. For the prompt emission, the
transition time between the exponential and the power law gives a well-defined
timescale, T_p, for the burst duration. We use T_p, the spectral index of the
prompt emission, beta_p, and the prompt power law decay index, alpha_p to
define four classes of burst: short, slow, fast and soft. Bursts with slowly
declining emission have spectral and temporal properties similar to the short
bursts despite having longer durations. Some of these GRBs may therefore arise
from similar progenitors including several types of binary system. Short bursts
tend to decline more gradually than longer duration bursts and hence emit a
significant fraction of their total energy at times greater than T_p. This may
be due to differences in the environment or the progenitor for long, fast
bursts.Comment: 10 pages. 8 figures. Proceedings of the Royal Society Discussion
meeting on Gamma-ray Bursts, September 18-20, 2006. To appear in Phil. Trans.
Roy. Soc.
Low-cost error mitigation by symmetry verification
We investigate the performance of error mitigation via measurement of
conserved symmetries on near-term devices. We present two protocols to measure
conserved symmetries during the bulk of an experiment, and develop a zero-cost
post-processing protocol which is equivalent to a variant of the quantum
subspace expansion. We develop methods for inserting global and local symetries
into quantum algorithms, and for adjusting natural symmetries of the problem to
boost their mitigation against different error channels. We demonstrate these
techniques on two- and four-qubit simulations of the hydrogen molecule (using a
classical density-matrix simulator), finding up to an order of magnitude
reduction of the error in obtaining the ground state dissociation curve.Comment: Published versio
Structural and electrostatic effects at the surfaces of size- and charge-selected aqueous nanodrops.
The effects of ion charge, polarity and size on the surface morphology of size-selected aqueous nanodrops containing a single ion and up to 550 water molecules are investigated with infrared photodissociation (IRPD) spectroscopy and theory. IRPD spectra of M(H2O) n where M = La3+, Ca2+, Na+, Li+, I-, SO42- and supporting molecular dynamics simulations indicate that strong interactions between multiply charged ions and water molecules can disrupt optimal hydrogen bonding (H-bonding) at the nanodrop surface. The IRPD spectra also reveal that "free" OH stretching frequencies of surface-bound water molecules are highly sensitive to the ion's identity and the OH bond's local H-bond environment. The measured frequency shifts are qualitatively reproduced by a computationally inexpensive point-charge model that shows the frequency shifts are consistent with a Stark shift from the ion's electric field. For multiply charged cations, pronounced Stark shifting is observed for clusters containing ∼100 or fewer water molecules. This is attributed to ion-induced solvent patterning that extends to the nanodrop surface, and serves as a spectroscopic signature for a cation's ability to influence the H-bond network of water located remotely from the ion. The Stark shifts measured for the larger nanodrops are extrapolated to infinite dilution to obtain the free OH stretching frequency of a surface-bound water molecule at the bulk air-water interface (3696.5-3701.0 cm-1), well within the relatively wide range of values obtained from SFG measurements. These cluster measurements also indicate that surface curvature effects can influence the free OH stretching frequency, and that even nanodrops without an ion have a surface potential that depends on cluster size
Locally Optimally Emitting Clouds and the Origin of Quasar Emission Lines
The similarity of quasar line spectra has been taken as an indication that
the emission line clouds have preferred parameters, suggesting that the
environment is subject to a fine tuning process. We show here that the observed
spectrum is a natural consequence of powerful selection effects. We computed a
large grid of photoionization models covering the widest possible range of
cloud gas density and distance from the central continuum source. For each line
only a narrow range of density and distance from the continuum source results
in maximum reprocessing efficiency, corresponding to ``locally
optimally-emitting clouds'' (LOC). These parameters depend on the ionization
and excitation potentials of the line, and its thermalization density. The mean
QSO line spectrum can be reproduced by simply adding together the full family
of clouds, with an appropriate covering fraction distribution. The observed
quasar spectrum is a natural consequence of the ability of various clouds to
reprocess the underlying continuum, and can arise in a chaotic environment with
no preferred pressure, gas density, or ionization parameter.Comment: 9 pages including 1 ps figure. LaTeX format using aaspp4.st
Gamma-Ray Bursts observed by XMM-Newton
Analysis of observations with XMM-Newton have made a significant contribution
to the study of Gamma-ray Burst (GRB) X-ray afterglows. The effective area,
bandpass and resolution of the EPIC instrument permit the study of a wide
variety of spectral features. In particular, strong, time-dependent, soft X-ray
emission lines have been discovered in some bursts. The emission mechanism and
energy source for these lines pose major problems for the current generation of
GRB models. Other GRBs have intrinsic absorption, possibly related to the
environment around the progenitor, or possible iron emission lines similar to
those seen in GRBs observed with BeppoSAX. Further XMM-Newton observations of
GRBs discovered by the Swift satellite should help unlock the origin of the GRB
phenomenon over the next few years.Comment: To appear in proceedings of the "XMM-Newton EPIC Consortium meeting,
Palermo, 2003 October 14-16", published in Memorie della Societa Astronomica
Italian
Radio Frequency Models of Novae in eruption. I. The Free-Free Process in Bipolar Morphologies
Observations of novae at radio frequencies provide us with a measure of the
total ejected mass, density profile and kinetic energy of a nova eruption. The
radio emission is typically well characterized by the free-free emission
process. Most models to date have assumed spherical symmetry for the eruption,
although it has been known for as long as there have been radio observations of
these systems, that spherical eruptions are to simplistic a geometry. In this
paper, we build bipolar models of the nova eruption, assuming the free-free
process, and show the effects of varying different parameters on the radio
light curves. The parameters considered include the ratio of the minor- to
major-axis, the inclination angle and shell thickness (further parameters are
provided in the appendix). We also show the uncertainty introduced when fitting
spherical model synthetic light curves to bipolar model synthetic light curves.
We find that the optically thick phase rises with the same power law () for both the spherical and bipolar models. In the bipolar case
there is a "plateau" phase -- depending on the thickness of the shell as well
as the ratio of the minor- to major-axis -- before the final decline, that
follows the same power law () as in the spherical case.
Finally, fitting spherical models to the bipolar model synthetic light curves
requires, in the worst case scenario, doubling the ejected mass, more than
halving the electron temperature and reducing the shell thickness by nearly a
factor of 10. This implies that in some systems we have been over predicting
the ejected masses and under predicting the electron temperature of the ejecta.Comment: 9 pages, 6 figures, accepted for publication in ApJ, accompanying
movie to figure 3 available at
http://www.ast.uct.ac.za/~valerio/papers/radioI
Very High Modulation Efficiency of Ultralow Threshold Current Single Quantum Well InGaAs Lasers
A record high current modulation efficiency of 5 GHz/[sqrt](mA) has been demonstrated in an ultralow threshold strained layer single quantum well InGaAs laser
- …
