3,109 research outputs found

    The Excess Far-Infrared Emission of AGN in the Local Universe

    Full text link
    We have cross-correlated the Sloan Digital Sky Survey (SDSS) second data release spectroscopic galaxy sample with the IRAS faint-source catalogue (FSC). Optical emission line ratios are used to classify the galaxies with reliable IRAS 60 and 100 microns detections into AGN and normal star-forming galaxies. We then create subsamples of normal galaxies and AGN that are very closely matched in terms of key physical properties such as stellar mass, redshift, size, concentration and mean stellar age (as measured by absorption line indicators in the SDSS spectra). We then quantify whether there are systematic differences between the IR luminosities of the galaxies and the AGN in the matched subsamples. We find that the AGN exhibit a significant excess in far-IR emission relative to the star-forming galaxies in our sample. The excesses at 60 and 100 microns are 0.21 +/- 0.03 dex and 0.12 +/- 0.035 dex in log[L(60)/M*] and log[L(100)/M*], respectively. We then discuss whether the far-IR excess is produced by radiation from the active nucleus that is absorbed by dust or alternatively, by an extra population of young stars that is not detectable at optical wavelengths.Comment: 12 pages, 14 figures, accepted by MNRA

    Exploring the formation of spheroidal galaxies out to z ∼ 1.5 in GOODS

    Get PDF
    The formation of massive spheroidal galaxies is studied on a visually classified sample extracted from the Advanced Camera for Surveys/Hubble Space Telescope (ACS/HST) images of the Great Observatories Origins Deep Survey north and south fields, covering a total area of 360 arcmin . The sample size (910 galaxies brighter than i = 24) allows us to explore in detail the evolution over a wide range of redshifts (0.4 10 M galaxies by a factor of 2 between z = 1 and 0, in contrast with a factor of ∼50 for lower mass galaxies (10 <M / M <10 ). One-quarter of the whole sample of early types are photometrically classified as blue galaxies. On a volume-limited sample out to z <0.7, the average stellar mass of the blue ellipticals is 5 × 10 M compared to 4 × 10 M for red ellipticals. On a volume-limited subsample out to z = 1.4 probing the brightest galaxies (M <-21), we find the median redshift of blue and red early types: 1.10 and 0.85, respectively. Blue early types only amount to 4 per cent of this sample (compared to 26 per cent in the full sample). The intrinsic colour distribution correlates overall bluer colours with blue cores (positive radial gradients of colour), suggesting an inside-out process of formation. The redshift evolution of the observed colour gradients is incompatible with a significant variation in stellar age within each galaxy. The slope of the Kormendy relation in the subsample of massive galaxies does not change over 0.4 <z <1.4 and is compatible with z = 0 values. The 'zero-point' of the Kormendy relation (i.e. the surface brightness at a fixed half-light radius) is 1 mag fainter (in the B band) for the subsample of low-mass (M <3.5 × 10 M ) early types.Peer reviewe

    The excess far-infrared emission of active galactic nuclei in the local Universe

    Get PDF
    We have cross-correlated the Sloan Digital Sky Survey (SDSS) second data release spectroscopic galaxy sample with the IRAS Faint Source Catalogue (FSC). Optical emission line ratios are used to classify the galaxies with reliable IRAS 60- and 100-μm detections into active galactic nuclei (AGN) and normal star-forming galaxies. We then create subsamples of normal galaxies and AGN that are very closely matched in terms of key physical properties such as stellar mass, redshift, size, concentration and mean stellar age (as measured by absorption line indicators in the SDSS spectra). We then quantify whether there are systematic differences between the infrared (IR) luminosities of the galaxies and the AGN in the matched subsamples. We find that the AGN exhibit a significant excess in far-infrared (FIR) emission relative to the star-forming galaxies in our sample. The excesses at 60 and 100 μm are 0.21 ± 0.03 and 0.12 ± 0.035 dex in log L60/M★ and log L100/M★, respectively. We then discuss whether the FIR excess is produced by radiation from the active nucleus that is absorbed by dust or, alternatively, by an extra population of young stars that is not detectable at optical wavelength

    Collapse of a semiflexible polymer in poor solvent

    Full text link
    We investigate the dynamics and the pathways of the collapse of a single, semiflexible polymer in a poor solvent via 3-D Brownian Dynamics simulations. Earlier work indicates that the condensation of semiflexible polymers generically proceeds via a cascade through metastable racquet-shaped, long-lived intermediates towards the stable torus state. We investigate the rate of decay of uncollapsed states, analyze the preferential pathways of condensation, and describe likelihood and lifespan of the different metastable states. The simulation are performed with a bead-stiff spring model with excluded volume interaction and exponentially decaying attractive potential. The semiflexible chain collapse is studied as functions of the three relevant length scales of the phenomenon, i.e., the total chain length LL, the persistence length LpL_p and the condensation length L0=kBTLp/u0L_0 = \sqrt{k_B T L_p/u_0}, where u0u_0 is a measure of the attractive potential per unit length. Two dimensionless ratios, L/LpL/L_p and L0/LpL_0/L_p, suffice to describe the decay rate of uncollapsed states, which appears to scale as (L/Lp)1/3(L0/Lp)(L/L_p)^{1/3} (L_0/L_p). The condensation sequence is described in terms of the time series of the well separated energy levels associated with each metastable collapsed state. The collapsed states are described quantitatively through the spatial correlation of tangent vectors along the chain. We also compare the results obtained with a locally inextensible bead-rod chain and with a phantom bead-spring model. Finally, we show preliminary results on the effects of steady shear flow on the kinetics of collapse.Comment: 9 pages, 8 figure

    Editorial: Integrating Whole Genome Sequencing Into Source Attribution and Risk Assessment of Foodborne Bacterial Pathogens

    Get PDF
    Source attribution and microbial risk assessment have proved to be crucial to identify and prioritize food safety interventions as to effectively control the burden of human illnesses (Cassini et al., 2016; Mughini-Gras et al., 2018a, 2019). By comparing human cases and pathogen occurrences in selected animal, food, and environmental sources, microbial subtyping approaches were successfully applied to pinpoint the most important sources of Salmonella, Campylobacter, Shiga toxin-producing Escherichia coli, and Listeria monocytogenes (Hald et al., 2004; Mullner et al., 2009a,b; Barco et al., 2013; Nielsen et al., 2017; Mughini-Gras et al., 2018b; Cody et al., 2019). Microbial risk assessment has been applied to assess known or potential adverse health effects resulting from human exposure to food-borne hazards. Through a scientific structured approach (FAO and WHO, 2021), microbial risk assessment helps to identify and quantify the risk represented by specific foods and the critical points in these foods' production chains for microbial control (Cassini et al., 2016; FAO and WHO, 2021). For both source attribution and risk assessment, one key challenge has been to define the hazard in question: is the whole foodborne pathogen species a hazard, or only some of its subtypes? In this regard the choice of the subtyping method becomes crucial. In recent years, Whole Genome Sequencing (WGS) has represented a major benefit for more targeted approaches, no longer focused on the species/genus level but at the level of subtypes (Franz et al., 2016; Fritsch et al., 2018; EFSA Panel on Biological Hazards, 2019). Besides WGS, metagenomics showed potentialities in source attribution. In particular, this approach was useful in attributing the source of environmental contamination by comparing the abundances of source-specific genetic markers (i.e., resistome) in different reservoirs (Gupta et al., 2019). Therefore, this special issue focuses on traditional and novel source attribution approaches applied on molecular, WGS, and metagenomic data as well as on a fine-tuning genetic characterization of foodborne pathogens useful for hazard identification and characterization. In particular, one study compares the outputs of a modified Hald model, which was applied to different subtyping input data of S. enterica Typhimurium and its monophasic variant (Arnold et al.) whereas two studies proposed a novel network approach and a method based on the core-genome genetic distance to attribute human infections of S. enterica Typhimurium monophasic variant and S. enterica Derby using WGS as input data (Merlotti et al.; Sévellec et al.). Another study by Duarte et al. included the relative abundance of antimicrobial resistance (AMR) associated genes (resistome) as metagenomic input data in an AMR source attribution study. Finally, two studies were focused on the molecular and genomic characterization of human isolates of Campylobacter jejuni and C. coli from China and of Listeria monocytogenes isolates collected from ready-to-eat meat and processing environment from Poland (Zhang et al.; Kurpas et al.). Arnold et al. performed a source attribution study including the genomes of S. enterica Typhimurium and its monophasic variant of 596 human sources and 327 animal sources from England and Wales between 2014 and 2016. Data from Seven Loci Multi Locus Sequence Typing (7-loci MLST), core-genome MLST (cg-MLST), and SNP calling were compared as input data. By applying a modified Hald model, 60% of human genomes were attributed to pork. Comparing different input data, results highlighted MLST as the method with the lowest fit and the lowest discriminatory power. Merlotti et al. applied a network approach to 351 human and animal genomes of S. enterica Typhimurium and its monophasic variant collected from 2013 to 2014. Three datasets of whole-genome MLST (wgMLST), cgMLST, and SNPs were used as input data. Genomes were clustered based on their genetic similarities. Interestingly, a higher percentage of cluster coherence was reported for animal sources in comparison to country and year of isolation, suggesting animal sources as the major driver of cluster formation. The approach showed to be effective in attributing up to 97.2% of human genomes to animal sources represented in the dataset. Among these genomes, the majority (84%) was attributed to pigs/pork. No significant differences were highlighted by comparing the three different input datasets. Core genome analysis was the approach applied by Sévellec et al. to attribute human sporadic cases of S. enterica Derby that occurred in France in 2014–2015 to non-human reservoirs. The authors analyzed 299 S. enterica Derby genomes corresponding to all S. enterica Derby sporadic human cases registered in the time frame, along with 141 non-human genomes. Within the non-human genomes, three main genomic lineages were detected in France: ST39-ST40 and ST682 associated to pork and ST71 associated to poultry. Within human genomes, 94% of S. enterica Derby clustered within the three genetic groups associated with pork, identifying this animal reservoir as the major contributor of S. enterica Derby to sporadic human cases in France. Relative abundance of antimicrobial resistance genes in shotgun metagenomic data was chosen in an antimicrobial resistance source attribution study by Duarte et al.. Starting from the assumption that fecal resistomes are source related, authors compared the resistomes of pooled fecal samples of pigs, broilers, turkeys, and veal calves with the resistomes of individual fecal samples of humans occupationally exposed to livestock production. Five supervised random forest models were applied on a total of 479 observations. Among the four livestock species, the results indicated that pigs have the resistome composition closest to the composition of the human resistome suggesting that occupational exposure to AMR determinants was higher among workers exposed to pigs than workers of broiler farms. Zhang et al. characterized genetic diversity and antimicrobial resistance of 236 Campylobacter jejuni and C. coli isolates collected from 2,945 individual stool samples of hospitalized patients with diarrhea in Beijing from 2017 to 2018. MLST results confirmed the high genetic diversity among isolates as well as CC21 as the most common clonal complex of C. jejuni in diarrhea patients in China. Clonal complex CC828 was the most frequently identified among C. coli isolates. Regarding antimicrobial resistance, rates higher than 88% were identified for the antimicrobials nalidixic acid, ciprofloxacin, and tetracycline. Last but not least, Kurpas et al. genetically characterized 48 L. monocytogenes isolates of PCR-serogroup IIb and IVb collected from ready-to-eat food and food processing environments. Additionally, the authors compared them with public genomes collected from humans in Poland. Among food isolates, 65% belonged to CC1, CC2, and CC6 already described as hypervirulent strains in humans. The clonal complex CC5 was also identified; mostly collected from food processing environments and belonging to PCR-serogroup IIB. Genomes of this clonal complex showed mutations in the inlA gene and a deletion of 144 bp in the inlB gene suggesting them as hypovirulent. Based on these studies, we conclude that the application of NGS data, in particular source attribution models, shows great potential. The results are improved by becoming more specific and to the point, which is considered very valuable for the decision support process. Integrations with phenotypic tests will continue to be essential for confirmation of NGS predicted outcomes

    Casimir force between sharp-shaped conductors

    Full text link
    Casimir forces between conductors at the sub-micron scale cannot be ignored in the design and operation of micro-electromechanical (MEM) devices. However, these forces depend non-trivially on geometry, and existing formulae and approximations cannot deal with realistic micro-machinery components with sharp edges and tips. Here, we employ a novel approach to electromagnetic scattering, appropriate to perfect conductors with sharp edges and tips, specifically to wedges and cones. The interaction of these objects with a metal plate (and among themselves) is then computed systematically by a multiple-scattering series. For the wedge, we obtain analytical expressions for the interaction with a plate, as functions of opening angle and tilt, which should provide a particularly useful tool for the design of MEMs. Our result for the Casimir interactions between conducting cones and plates applies directly to the force on the tip of a scanning tunneling probe; the unexpectedly large temperature dependence of the force in these configurations should attract immediate experimental interest

    J. Biol. Chem.

    Get PDF

    Deep HST-WFPC2 photometry of NGC 288. II. The Main Sequence Luminosity Function

    Get PDF
    The Main Sequence Luminosity Function (LF) of the Galactic globular cluster NGC 288 has been obtained using deep WFPC2 photometry. We have employed a new method to correct for completeness and fully account for bin-to-bin migration due to blending and/or observational scatter. The effect of the presence of binary systems in the final LF is quantified and is found to be negligible. There is a strong indication of the mass segregation of unevolved single stars and clear signs of a depletion of low mass stars in NGC 288 with respect to other clusters. The results are in good agreement with the prediction of theoretical models of the dynamical evolution of NGC 288 that take into account the extreme orbital properties of this cluster.Comment: 16 pages, 6 .ps figures. Low resolution version of fig. 1; full resolution figure soon available at http://www.bo.astro.it/bap/BAPhome.html l. Latex. emulateapj5.sty macro included. Accepted for publication by The Astronomical Journa

    GR 290 (Romano's Star): 2. Light history and evolutionary state

    Get PDF
    We have built the historical light curve of the luminous variable GR 290 back to 1901, from old observations of the star found in several archival plates of M 33. These old recordings together with published and new data show that for at least half a century the star was in a low luminosity state, with B ~18. After 1960, five large variability cycles of visual luminosity were recorded. The amplitude of the oscillations was seen increasing towards the 1992-1994 maximum, then decreasing during the last maxima. The recent light curve indicates that the photometric variations have been quite similar in all the bands, and that the B-V color index has been constant within +/-0.1 m despite the 1.5m change of the visual luminosity. The spectrum of GR 290 at the large maximum of 1992-94, was equivalent to late-B type, while, during 2002-2014, it has varied between WN10h-11h near the visual maxima to WN8h-9h at the luminosity minima. We have detected, during this same period, a clear anti-correlation between the visual luminosity, the strength of the HeII 4686 A emission line, the strength of the 4600-4700 A lines blend and the spectral type. From a model analysis of the spectra collected during the whole 2002-2014 period we find that the Rosseland radius R_{2/3}, changed between the minimum and maximum luminosity phases by a factor of 3, while T_eff varied between about 33,000 K and 23,000 K. The bolometric luminosity of the star was not constant, but increased by a factor of ~1.5 between minimum and maximum luminosity, in phase with the apparent luminosity variations. In the light of current evolutionary models of very massive stars, we find that GR 290 has evolved from a ~60 M_Sun progenitor star and should have an age of about 4 million years. We argue that it has left the LBV stage and is moving to a Wolf-Rayet stage of late nitrogen spectral type.Comment: Accepted on The Astronomical Journal, 10 figures. Replaced because the previous uploaded file was that without the final small corrections requested by the refere

    Chiral Recognition: A Spin-Driven Process in Chiral Oligothiophene. A Chiral-Induced Spin Selectivity (CISS) Effect Manifestation

    Get PDF
    In this paper it is experimentally demonstrated that the electron-spin/molecular-handedness interaction plays a fundamental role in the chiral recognition process. This conclusion is inferred comparing current versus potential (I-V) curves recorded using chiral electrode surfaces, which are obtained via chemisorption of an enantiopure thiophene derivative: 3,3 &amp; PRIME;-bibenzothiophene core functionalized with 2,2 &amp; PRIME;-bithiophene wings (BT2T4). The chiral recognition capability of these chiral-electrodes is probed via cyclic voltammetry measurements, where, Ag nanoparticles (AgNPs) capped with enantiopure BT2T4 (BT2T4@AgNP) are used as the chiral redox probe. Then, the interface handedness is explored by recording spin-polarized I-V curves in spin-dependent electrochemistry (SDE) and magnetic-conductive atomic force microscopy (mc-AFM) experiments. The quality of the interfaces is thoroughly cross-checked using X-ray photoemission spectroscopy, Raman, electrodesorption measurements, which further substantiate the metal(electrode)-sulfur(thiophene) central role in the chemisorption process. Spin-polarization values of about 15% and 30% are obtained in the case of SDE and mc-AFM experiments, respectively.It is demonstrated that probing the handedness of a chiral system (here a chiral-electrode-surface/solution interface) by using a spin-polarized current, allows for chiral recognition. This conclusion is inferred by tight comparison with cyclic voltammetry results, where the handedness of the "chiral-electrode-surface/solution interface" is recognized by using an enantiopure chiral redox couple.imag
    • …
    corecore