113 research outputs found

    Integration at a cost: Evidence from volatility impulse response functions

    Get PDF
    We investigate the international information transmission between the U.S. and the rest of the G-7 countries using daily stock market return data covering the last 20 years. A pre-1995 and post- 1995 analysis reveals that the linkages between the markets have changed substantially in the more recent era, suggesting that national markets have become more interdependent. In the majority of the countries under scrutiny, we provide evidence of direct volatility spillovers, running mainly from the US and pointing to more rapid information transmission during the recent years. We further uncover the dynamics of the volatility spillovers between the international stock markets by means of a Volatility Impulse Response Analysis. Our findings, based on three historical shocks that have caused turbulence in the stock markets, suggest that the persistence of volatility shocks has increased substantially during the post-1995 period mainly due to increased persistence and interdependence in the volatility of all markets. As a result, volatility shocks in the international stock markets nowadays perpetuate for a significant longer period compared to the pre-1995 era.volatility spillovers,volatility impulse response functions,stock market, ARCH-BEKK

    The Bds Test As A Test For The Adequacy Of A Garch(1,1) Specification: A Monte Carlo Study

    Get PDF
    In this study we examine the widely used Brock, Dechert and Scheinkman (BDS) test when applied to the logarithm of the standardized residuals of an estimated GARCH(1,1) model as a test for the adequacy of this speciÞcation. We review the conditions derived by De Lima (1996, Econometric Reviews, 15, 237-259) for the nuisance-parameter free property to hold, and address the issue of their necessity, using the ßexible framework offered by the GARCH(1,1) model in terms of moment, memory and time heterogeneity properties. By means of Monte Carlo simulations, we show that the BDS test statistic still approximates the standard null distribution even for mildly explosive processes that violate the majority of the conditions. Thus, the test performs reasonably well, its empirical size being rather close to the nominal one. As a by-product of this study, we also shed light on the related issue of consistency of the QML estimators of the conditional variance parameters under various parameter conÞgurations and alternative distributional assumptions on the innovation process

    Exploring Tourist Experiences of Virtual Reality in a Rural Destination: A Place Attachment Theory Perspective

    Get PDF
    In tourism, virtual reality (VR) experience gained a lot of interest recently. It is argued that positive tourist experience might enhance place attachment (PA) which can be described as the emotional bond between people and places. However, PA studies neglects virtual environments and thus studies in a VR context are scarce. Therefore the present study, explores to what extend VR increases tourist experience and affects tourist’s PA at rural destination of Lake District National Park (LDNP). For this purpose semi-structured interviews were conducted in July 2017. Data were analyzed using thematic analyses and first finding shows that VR enhances tourist experience and shows a positive influence on PA. Two main themes were identified; enhanced spatial cognition and positive feelings. The theoretical contribution is to expand PA theory considering virtual environments. Managerial implications include using VR as a marketing tool for increasing tourist experience at the destination

    A novel microfluidic point-of-care biosensor system on printed circuit board for cytokine detection

    Get PDF
    Point of Care (PoC) diagnostics have been the subject of considerable research over the last few decades driven by the pressure to detect diseases quickly and effectively and reduce healthcare costs. Herein, we demonstrate a novel, fully integrated, microfluidic amperometric enzyme-linked immunosorbent assay (ELISA) prototype using a commercial interferon gamma release assay (IGRA) as a model antibody binding system. Microfluidic assay chemistry was engineered to take place on Au-plated electrodes within an assay cell on a printed circuit board (PCB)-based biosensor system. The assay cell is linked to an electrochemical reporter cell comprising microfluidic architecture, Au working and counter electrodes and a Ag/AgCl reference electrode, all manufactured exclusively via standard commercial PCB fabrication processes. Assay chemistry has been optimised for microfluidic diffusion kinetics to function under continual flow. We characterised the electrode integrity of the developed platforms with reference to biological sampling and buffer composition and subsequently we demonstrated concentration-dependent measurements of H2O2 depletion as resolved by existing FDA-validated ELISA kits. Finally, we validated the assay technology in both buffer and serum and demonstrate limits of detection comparable to high-end commercial systems with the addition of full microfluidic assay architecture capable of returning diagnostic analyses in approximately eight minutes

    A Novel Microfluidic Point-of-Care Biosensor System on Printed Circuit Board for Cytokine Detection

    Get PDF
    Point of Care (PoC) diagnostics have been the subject of considerable research over the last few decades driven by the pressure to detect diseases quickly and effectively and reduce healthcare costs. Herein, we demonstrate a novel, fully integrated, microfluidic amperometric enzyme-linked immunosorbent assay (ELISA) prototype using a commercial interferon gamma release assay (IGRA) as a model antibody binding system. Microfluidic assay chemistry was engineered to take place on Au-plated electrodes within an assay cell on a printed circuit board (PCB)-based biosensor system. The assay cell is linked to an electrochemical reporter cell comprising microfluidic architecture, Au working and counter electrodes and a Ag/AgCl reference electrode, all manufactured exclusively via standard commercial PCB fabrication processes. Assay chemistry has been optimised for microfluidic diffusion kinetics to function under continual flow. We characterised the electrode integrity of the developed platforms with reference to biological sampling and buffer composition and subsequently we demonstrated concentration-dependent measurements of H₂O₂ depletion as resolved by existing FDA-validated ELISA kits. Finally, we validated the assay technology in both buffer and serum and demonstrate limits of detection comparable to high-end commercial systems with the addition of full microfluidic assay architecture capable of returning diagnostic analyses in approximately eight minutes

    An Assay System for Point-of-Care Diagnosis of Tuberculosis using Commercially Manufactured PCB Technology

    Get PDF
    Rapid advances in clinical technologies, detection sensitivity and analytical throughput have delivered a significant expansion in our knowledge of prognostic and diagnostic biomarkers in many common infectious diseases, such as Tuberculosis (TB). During the last decade, a significant number of approaches to TB diagnosis have been attempted at Point-of-Care (PoC), exploiting a large variation of techniques and materials. In this work, we describe an electronics-based Enzyme-Linked ImmunoSorbent Assay (eELISA), using a Lab-on-a-Printed Circuit Board (LoPCB) approach, for TB diagnosis based on cytokine detection. The test relies upon an electrochemical (amperometric) assay, comprising a high-precision bioinstrumentation board and amperometric sensors, produced exclusively using standard PCB manufacturing processes. Electrochemical detection uses standard Au and Ag electrodes together with a bespoke, low-power, multichannel, portable data-acquisition system. We demonstrate high-performance assay chemistry performed at microfluidic volumes on Au pads directly at the PCB surface with improved limit of detection (~10 pg/mL) over standard colorimetric ELISA methods. The assay has also been implemented in plasma, showing the utility of the system for medical applications. This work is a significant step towards the development of a low-cost, portable, high-precision diagnostic and monitoring technology, which once combined with appropriate PCB-based microfluidic networks will provide complete LoPCB platforms

    Attention-dependent modulation of cortical taste circuits revealed by granger causality with signal-dependent noise

    Get PDF
    We show, for the first time, that in cortical areas, for example the insular, orbitofrontal, and lateral prefrontal cortex, there is signal-dependent noise in the fMRI blood-oxygen level dependent (BOLD) time series, with the variance of the noise increasing approximately linearly with the square of the signal. Classical Granger causal models are based on autoregressive models with time invariant covariance structure, and thus do not take this signal-dependent noise into account. To address this limitation, here we describe a Granger causal model with signal-dependent noise, and a novel, likelihood ratio test for causal inferences. We apply this approach to the data from an fMRI study to investigate the source of the top-down attentional control of taste intensity and taste pleasantness processing. The Granger causality with signal-dependent noise analysis reveals effects not identified by classical Granger causal analysis. In particular, there is a top-down effect from the posterior lateral prefrontal cortex to the insular taste cortex during attention to intensity but not to pleasantness, and there is a top-down effect from the anterior and posterior lateral prefrontal cortex to the orbitofrontal cortex during attention to pleasantness but not to intensity. In addition, there is stronger forward effective connectivity from the insular taste cortex to the orbitofrontal cortex during attention to pleasantness than during attention to intensity. These findings indicate the importance of explicitly modeling signal-dependent noise in functional neuroimaging, and reveal some of the processes involved in a biased activation theory of selective attention

    Tumor Necrosis Factor-α +489G/A gene polymorphism is associated with chronic obstructive pulmonary disease

    Get PDF
    BACKGROUND: Chronic obstructive pulmonary disease (COPD) is characterized by a chronic inflammatory process, in which the pro-inflammatory cytokine Tumor Necrosis Factor (TNF)-α is considered to play a role. In the present study the putative involvement of TNF-α gene polymorphisms in pathogenesis of COPD was studied by analysis of four TNF-α gene polymorphisms in a Caucasian COPD population. METHODS: TNF-α gene polymorphisms at positions -376G/A, -308G/A, -238G/A, and +489G/A were examined in 169 Dutch COPD patients, who had a mean forced expiratory volume in one second (FEV1) of 37 ± 13%, and compared with a Dutch population control group of 358 subjects. RESULTS: The data showed that the TNF-α +489G/A genotype frequency tended to be different in COPD patients as compared to population controls, which was due to an enhanced frequency of the GA genotype. In line herewith, carriership of the minor allele was associated with enhanced risk of development of COPD (odds ratio = 1.9, p = 0.009). The other TNF-α gene polymorphisms studied revealed no discrimination between patients and controls. No differences in the examined four TNF-α polymorphisms were found between subtypes of COPD, which were stratified for the presence of radiological emphysema. However, comparison of the COPD subtypes with controls showed a significant difference in the TNF-α +489G/A genotype in patients without radiological emphysema (χ(2)-test: p < 0.025 [Bonferroni adjusted]), while no differences between COPD patients with radiological emphysema and controls were observed. CONCLUSION: Based on the reported data, it is concluded that COPD, and especially a subgroup of COPD patients without radiological emphysema, is associated with TNF-α +489G/A gene polymorphism

    Association of surfactant protein A polymorphisms with otitis media in infants at risk for asthma

    Get PDF
    BACKGROUND: Otitis media is one of the most common infections of early childhood. Surfactant protein A functions as part of the innate immune response, which plays an important role in preventing infections early in life. This prospective study utilized a candidate gene approach to evaluate the association between polymorphisms in loci encoding SP-A and risk of otitis media during the first year of life among a cohort of infants at risk for developing asthma. METHODS: Between September 1996 and December 1998, women were invited to participate if they had at least one other child with physician-diagnosed asthma. Each mother was given a standardized questionnaire within 4 months of her infant's birth. Infant respiratory symptoms were collected during quarterly telephone interviews at 6, 9 and 12 months of age. Genotyping was done on 355 infants for whom whole blood and complete otitis media data were available. RESULTS: Polymorphisms at codons 19, 62, and 133 in SP-A1, and 223 in SP-A2 were associated with race/ethnicity. In logistic regression models incorporating estimates of uncertainty in haplotype assignment, the 6A(4)/1A(5)haplotype was protective for otitis media among white infants in our study population (OR 0.23; 95% CI 0.07,0.73). CONCLUSION: These results indicate that polymorphisms within SP-A loci may be associated with otitis media in white infants. Larger confirmatory studies in all ethnic groups are warranted

    Interleukin-6 Contributes to Inflammation and Remodeling in a Model of Adenosine Mediated Lung Injury

    Get PDF
    Chronic lung diseases are the third leading cause of death in the United States due in part to an incomplete understanding of pathways that govern the progressive tissue remodeling that occurs in these disorders. Adenosine is elevated in the lungs of animal models and humans with chronic lung disease where it promotes air-space destruction and fibrosis. Adenosine signaling increases the production of the pro-fibrotic cytokine interleukin-6 (IL-6). Based on these observations, we hypothesized that IL-6 signaling contributes to tissue destruction and remodeling in a model of chronic lung disease where adenosine levels are elevated.We tested this hypothesis by neutralizing or genetically removing IL-6 in adenosine deaminase (ADA)-deficient mice that develop adenosine dependent pulmonary inflammation and remodeling. Results demonstrated that both pharmacologic blockade and genetic removal of IL-6 attenuated pulmonary inflammation, remodeling and fibrosis in this model. The pursuit of mechanisms involved revealed adenosine and IL-6 dependent activation of STAT-3 in airway epithelial cells.These findings demonstrate that adenosine enhances IL-6 signaling pathways to promote aspects of chronic lung disease. This suggests that blocking IL-6 signaling during chronic stages of disease may provide benefit in halting remodeling processes such as fibrosis and air-space destruction
    corecore