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1 Introduction
The Brock, Dechert and Scheinkman (1987) test for nonlinearity (BDS test henceforth) is widely
used as a misspecification test for parametric models capturing the dynamics of time series. For
this purpose, it is applied to the estimated residuals from the model of interest. As these can still
exhibit some form of dependence, even if the true innovations are i.i.d., the asymptotic distribution
of the test statistic may be affected by the estimation procedure. This possible distortion has led
researchers to consider test statistics exhibiting the so-called nuisance-parameter free property, i.e.
whose asymptotic distribution is not affected by the intermediate step of parameter estimation.
Brock, Dechert and Scheinkman (1987) and Brock, Hsieh and LeBaron (1991) were the first to

derive conditions for the BDS test to be nuisance-parameter free, and to carry out Monte Carlo
simulations to corroborate their theoretical results. Following the work of Randles (1982), De
Lima (1996) investigated further the invariance property of the BDS test, and showed that, under
appropriate sufficient conditions for the series under scrutiny, the BDS test is nuisance-parameter
free for linear additive models or models that can be cast into this format. This family includes
the ARCH class of models, introduced by Engle (1982) and generalized by Bollerslev (1986), as
long as the BDS test is applied to a modified residual series, namely the logarithm of the squared
standardized residuals. Examining the “necessity” of De Lima’s conditions is a difficult task
analytically, and can be more conveniently achieved by means of suitably designed Monte Carlo
simulations in the context of an appropriate model.
This paper investigates the “necessity” of De Lima’s conditions for the BDS test statistic

to have an asymptotic N(0,1) distribution when it is computed using the (modified) estimated
standardized residuals of a GARCH(1,1) model. Our aim is to analyze the properties of the BDS
test when applied to the logarithm of the squared standardized residuals for various distributional
assumptions on the innovations sequence and alternative values of the GARCH parameters. Given
that the GARCH(1,1) model is versatile enough to produce a range of stochastic processes, with
very different moment and memory characteristics, depending on the parameter settings and the
distribution of the innovations, we shall be able to examine cases that violate some of De Lima’s
conditions. Indeed, the GARCH(1,1) model provides a flexible framework allowing the researcher
to control for the amount of temporal dependence, the degree of time-heterogeneity, and the
number of unconditional moments that characterize the process by simply changing the values of
the model parameters and/or the distributional assumption on the innovations.
Our simulation results suggest that the BDS test performs remarkably well even in cases

where De Lima’s conditions concerning the memory, moment and time heterogeneity properties
of the series of interest fail to hold. This would suggest that some of De Lima’s conditions
are stricter than necessary. It also intimates that the performance of the BDS test is closely
related to the quality of the Quasi Maximum Likelihood (QML) estimator of the conditional
variance parameters. In fact, the cases when the distributional divergence of the BDS test from
N(0, 1) is maximized coincide with those when the bias of the QML estimator is maximized (i.e.,
when the sample size is less than 250). This association suggests that the most important of De
Lima’s conditions is the one that requires consistency of the QML estimator. Fortunately for the
behaviour of the BDS test, the consistency of QML estimator is preserved even if the GARCH
process is neither strictly stationary nor ergodic, having no unconditional moments and being
driven by leptokurtic and/or asymmetric innovations (Jensen and Rahbek (2003)).
The paper is structured as follows. Section 2 briefly summarizes the conditions that must be

satisfied by the process of interest in order for the test to be nuisance-parameter free. Section
3 outlines the moment, memory and heterogeneity properties of the GARCH(1,1) model. In
addition, it discusses the issue of consistently estimating its parameters, including the case where
non-Gaussian innovations drive the GARCH process. Section 4 describes the Monte Carlo setup
and reports the main findings. Finally, Section 5 offers a brief summary of the main results and
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some concluding remarks.

2 The Brock, Dechert and Scheinkman (BDS) test
We begin by giving a brief description of the BDS test.1 Let {ut} be a real-valued scalar stochastic
process with the m-history process defined as umt = (ut, ut+1, ...ut+m−1). The correlation integral
at embedding dimension, m, for ε > 0, is estimated by the following U-statistic:

Cm,ε =

µ
1³
T
2

´¶ X
1≤s≤t≤T

X
Iε(u

m
t , u

m
s ) (1)

where T = T − (M −1), Iε(., .) is the symmetric indicator kernel with Iε(z, w) = 1 if k z−w k< ε
and 0 otherwise and k . k is the max-norm. If {ut} is an i.i.d. process with a nondegenerate
cumulative distribution F , then for fixed ε > 0 and m = 1, 2, ..., Cm,ε → C(ε)m, as T →∞, with
probability one, where

C(ε) =

Z
[F (z + ε)− F (z − ε)]dF (z) (2)

Brock, Dechert and Scheinkman (1987) define the BDS statistic

Vm,ε =
√
T
Cm,ε − C(ε)m

sm,ε

where sm,ε is a consistent estimator of the asymptotic standard deviation, σm,ε, of
√
T (Cm,ε − C(ε)m),

and show that under the null hypothesis that {ut} is i.i.d., Vm,ε → N(0, 1), ∀ε > 0 and
m = 2, 3, .....2 Initially, the test was designed to be applied to raw series in order to test whether
they are i.i.d. It was soon realized that it could also be applied to the estimated residuals from a
model to test for omitted dynamics, i.e. to test model adequacy. Brock and Dechert (1988) and
De Lima (1996) examined the conditions under which the BDS statistic is nuisance-parameter
free, that is its asymptotic distribution does not change when it is applied to the estimated resid-
uals from a model, rather than the raw series itself. The invariance property of the BDS statistic
is ensured by a set of sufficient conditions that are more stringent than in the case of smooth
U-statistics (the BDS test being a function of those). This is because the indicator kernel, Iε(., .),
used in the definition of the correlation integral, is not a differentiable smooth kernel. As a result,
special sufficient conditions, ensuring the reversibility between the operations of differentiation and
taking the limiting mean, are required in order to guarantee the invariance property of the BDS
statistic. Specifically, following Randles (1982), De Lima (1996) derives five sufficient conditions
(Assumptions A-D, pp. 240-241, and Assumption E, pp. 245) that ensure the ‘nuisance-parameter
free’ property of the BDS test for linear additive models, such as yt = G(Yt−1; θ)+et, or for models
that can be transformed into this format. In this paper, we focus on the effects of the failure of
some of these conditions on the invariance property of the BDS test. Assumption A requires yt to
be a strong mixing process with summable mixing coefficients, a(k), that is

P∞
k=1 a(k)

1/2 < ∞.
Assumption B and C impose moment conditions on the difference between the kernel Iε evaluated
at two different points of the residual function. Of these two assumptions, B is the most important
one, and may be verified in a case by case framework by evaluating the supremum of the rele-
vant random variable. Assumption C is automatically satisfied (by assumption B) for bounded

1A detailed description of the BDS test can be found in Brock, Dechert and Scheinkman (1987) or De Lima
(1996).

2Note that the asymptotic normality of the BDS statistic is established without assuming the existence of any
unconditional moments. This feature differentiates the BDS from other nonlinearity tests such as the McLeod-Li
test, which requires finite unconditional moments of the fourth order (see McLeod and Li (1983)) or the bispectrum
test of Subba Rao and Gabr (1980), which requires finite unconditional moments of the sixth order.
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kernels. Assumption D requires the parameters, θ, of the model to be consistently estimated.
The consistency of the estimator of θ is usually based on some memory restrictions on the errors
of the model, such as strong mixing with summable mixing coefficients. Of course, if the errors
are i.i.d. these restrictions are automatically satisfied. Moreover, for the same reason (consistent
estimation of θ) moment conditions on the error term (or sometimes on the raw series itself)
should be imposed. Therefore, the nuisance-parameter free property of the BDS does require
moment restrictions when the BDS test is applied to estimated residuals as opposed to raw data.
Finally, Assumption E requires the distribution of the innovations to be absolutely continuous
and differentiable, with a bounded density function.

3 Consistent Estimation and Moment and Memory Properties of the
GARCH(1,1) Process

We shall investigate the necessity of these conditions (A-E) in the context of a martingale-
difference (MD) GARCH(1,1) model. Specifically, we assume that ut is generated as follows:

ut = htzt (3)

zt ∼ i .i .d .(0, 1) (4)

where

h2t = ω + µu2t−1 + δh2t−1 (5)

denotes the variance of ut conditional on the σ−field, Ft−1, generated by all information available
at time t-1. Note that no specific distributional characteristics of zt have been assumed yet,
other than the variance of the unspecified distribution is equal to one. The unit variance of zt is
necessary for h2t to be the conditional variance of ut. The choice of this particular process for ut was
made for two reasons. First, the MD-GARCH(1,1) process is a versatile stochastic process, which,
depending on the distribution of the innovations process, zt, and the values of the coefficients µ
and δ, is able to reproduce processes that range from b−mixing with finite unconditional moments
of the fourth order to processes that are neither mixing nor possess any unconditional moments.
Note that the error term in (3) is not additive. However, this does not cause any serious difficulties
since, by raising both sides of (3) to the square power and taking logs, we can transform (3) into
a model that contains an additive error, νt = ln z2t = lnu

2
t − lnh2t . The asymptotic distribution of

the BDS test applied to the estimated residuals bνt is the same as that of the test when applied to
νt provided that bνt is a consistent estimator of νt. Many studies, including the original Brock et
al. (1991), examine the finite-sample properties of the BDS test by utilizing the non-transformed
residuals bzt instead of the logged residuals bνt. This in effect means that the model has not been
transformed into one containing an additive error term, which has some important implications
for the size-properties of the BDS test in finite samples (see next section for a thorough discussion
on this point).
As already mentioned, the moment and memory characteristics of ut depend on a) the distrib-

ution of the innovations zt and b) the values of the parameters µ and δ. The following subsection
summarizes the main theoretical results found in the literature.
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3.1 Moment and Memory Properties of the GARCH(1,1) Process
Case I: Fourth-order stationary process.
He and Terasvirta (1999) provide a necessary and sufficient condition for E(u4t ) < ∞.3 This

condition requires minimum restrictions on the innovation process zt, which is assumed to be a
zero mean i.i.d. process with second and fourth unconditional moments denoted by v2 and v4
respectively. The condition is

µ2v4 + 2µδv2 + δ2 < 1 (6)

which, under the assumption that zt ∼ N(0, 1), reduces to Bollerslev’s (1986) condition

3µ2 + 2µδ + δ2 < 1 (7)

As for the memory properties, Davidson (2002) retains the unit variance assumption (v2 = 1)
and demonstrates that condition (6) is necessary and nearly sufficient for ut to be near-epoch
dependent on zt in L2-norm (L2 − NED).4 This is sufficient for the series to obey the central
limit theorem or the invariance principle.
Case II: Covariance stationary process.
In this case, condition (6) is violated, but we assume that the unconditional second moment

exists, which amounts to

µv2 + δ < 1 (8)

Under the unit variance assumption, the necessary and sufficient condition for covariance station-
arity reduces to the well-known condition

µ+ δ < 1 (9)

Davidson (2002) proves that, under (9), ut is L1−NED on zt , that is the sufficient condition for
the series to obey the law of large numbers, but not the corresponding one for the Central Limit
Theorem (CLT). Nevertheless, as shown by De Lima (1996), since covariance stationarity holds,
the condition for assumption B is satisfied. Moreover, Carrasco and Chen (2002) prove that (9)
is necessary and sufficient for ut to be b−mixing. Since b−mixing is stronger than a−mixing
(but weaker than ϕ−mixing), we may conclude that condition (9) is sufficient to guarantee the
required memory property.
Case III: IGARCH process, with E(ut) = 0.
Nelson (1990) proves that a necessary and sufficient condition for ut to be strictly stationary

and ergodic is given by

E
£
ln(δ + µz2)

¤
< 0 (10)

regardless of the distribution of the i.i.d. innovations zt. This condition holds even if

µv2 + δ = 1 (11)

Under (11), E(ut) = 0, and V ar(ut) = ∞. In such a case, the L2−NED measure of memory is
unavailable, since the unconditional second moment of ut does not exist. Moreover, there is no
guarantee that ut is a−mixing.

3See also Ling and McAleer (2002) for the necessary and sufficient condition for the existence of higher order
moments of the GARCH(r,s) model.

4Davidson (2002) shows that the fourth moment condition is necessary and nearly sufficient for the L2−NED
property, regardless of the distribution of the innovations process. The L2−NED property of a GARCH(1,1)
process was first proved by Hansen (1991) under the additional assumption of normality of zt.
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Case IV: Mildly explosive process, with E(ut) = 0.
Nelson (1990) shows that there might be an area in the (µ− δ) plane for which µv2 + δ > 1

and condition (10) holds. In such a case, ut is mildly explosive but still strictly stationary and
ergodic. If, in addition,

E(δ + µz2)1/2 < 1 (12)

the process ut has an unconditional mean equal to zero.
Case V: Mildly explosive process, with E(ut) =∞.
This is a case where µ and δ are such that (10) is satisfied but (12) fails. By comparing this

case with the previous one, one can discern the importance of the finite (zero) mean property of
ut for the properties of the BDS statistic.
Let us now turn to the problem of estimating the conditional variance parameters, θ = (ω, µ, δ).

3.2 Consistent Estimation of the GARCH(1,1) parameters.
When zt ∼ N(0, 1), the employment of the Gaussian likelihood function results in Maximum
Likelihood (ML) estimates, bθML, of θ = (ω, µ, δ). If the distribution of zt is not Normal, then the
Gaussian likelihood function produces the so-called Quasi Maximum Likelihood (QML) estimates
of θ. The asymptotic properties of the QML estimates of θ have been studied in Bollerslev and
Wooldridge (1992), Lumsdaine (1996) and Lee and Hansen (1994). All these studies require the
validity of (10), that is they assume that ut is strictly stationary and ergodic so that the relevant
laws of large numbers apply. They differ in the moment restrictions that they impose either on ut
or on zt. More recently, Jensen and Rahbek (2003) relax the stationarity condition (10) and prove
the
√
T−consistency (and asymptotic normality) of the QML estimates in cases where ut is a non-

stationary process with unbounded low order moments. The only condition they impose is the
existence of the fourth moment of zt (not ut). Interestingly, they claim that unreported simulation
evidence suggests that the rate of convergence is faster in the non-stationary than in the stationary
case. These results imply that the QML estimates of θ are (at-least)

√
T−consistent for all the

five cases defined above provided that ν4 <∞. However, as will be shown below,
√
T−consistency

of the QML estimates of θ seems to be achieved even in cases where ν4 is infinite, as for example
when zt follows a t(4)− or t(3)−distribution. Therefore, as a by-product of this study, we provide
evidence that the existing conditions for

√
T−consistency of the QML estimates of θ may be

relaxed.

4 Monte Carlo Simulations
In this section we carry out Monte Carlo simulations that aim at examining the distribution of the
BDS statistic and the resulting performance of the BDS test in cases where some of the sufficient
conditions for the invariance property of the BDS test fail. Since the performance of the BDS test
statistic is closely linked to the quality of the estimation of the GARCH parameters, we examine
both issues jointly. The simulations are designed as follows. First, we choose the distribution of
the innovation zt, and generate i.i.d. series with mean zero and variance one. Second, we select
the GARCH parameters, δ and µ, in such a way as to generate a series ut with specific moment
and memory properties as outlined in cases I to V. Third, we estimate a GARCH(1,1) model, take
the logarithm of the squared standardized residuals and compute the BDS statistic for various
values of m and ε/σ (σ being the standard deviation of the sample series) and for alternative
sample sizes, T. In particular, the values of ε/σ considered are 0.5, 1, 1.5 and 2, those of m are
2,3,...10, and the sample sizes are 100, 250, 500, 1000 and 2000.5 The values of these parameters

5Initially, we generate a sample of T +250 observations and discard the first 250 to account for the effect of the
initial conditions.
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were selected so as to make our results comparable to those of the existing literature, in particular
those in Brock et al. (1991), Brooks and Heravi (1999) and Brooks and Henry (2000). We repeat
this procedure 2000 times and calculate the mean, variance, skewness and kurtosis coefficients
of the BDS statistic. We also compute the 5% empirical size. In order to be able to compare
our results with those from other studies, which have applied the BDS test on the non-logged
residuals, we repeat the above described procedure for the case where the statistic, denoted as
BDS∗, is calculated on the basis of the non-logged standardized residuals. Further, for each
parameter configuration and for each sample size, we compute the average absolute bias of the
QML estimates of ω, µ and δ. This has two aims: First, to examine the behaviour of the QML
estimator of the GARCH parameters in small samples when the requirement ν4 <∞ is satisfied.
Although consistency holds in this case (i.e. when ν4 < ∞), the bias of the QML estimator,
in small samples, may affect the behaviour of the BDS test. Second, and more importantly, to
examine whether consistency is threatened in cases that fall outside the spectrum covered by the
analytic results of Jensen and Rahbek (2003), that is, for example, when zt follows a t(4)− or
t(3)−distribution. Although we cannot reliably establish consistency results (or identify rates of
convergence) by means of simulation techniques, the simulation results can nevertheless give an
indication of whether problems might arise when the fourth moment of zt does not exist.

4.1 The case of Gaussian innovations
First, we assume that zt is an i.i.d. Gaussian process. Figure 1 shows the regions in the (µ− δ)
plane that correspond to the five cases defined above, when zt ∼ N(0, 1). Regions 1 and 2
correspond to cases I and II respectively; the boundary between regions 2 and 4 to case III; and
finally regions 4 and 5 to cases IV and V respectively. We selected values of (µ, δ) ranging from
the upper left area of each region to the bottom right one, in order to achieve full coverage of each
region.6 However, we report in the Tables only the results for one pair of values of (µ, δ), which
is representative of those typical of the relevant literature, i.e. a very small µ and a much larger
δ. We mention in the text any cases where other points from the same region produce different
results. The reported results are those for the following pairs of values for (µ, δ) corresponding to
the five regions mentioned above:
Model I: (µ, δ) = (0.1 , 0.85)
Model II: (µ, δ) = (0.1 , 0.895)
Model III: (µ, δ) = (0.1 , 0.9)
Model IV: (µ, δ) = (0.1 , 0.904)
Model V: (µ, δ) = (0.1 , 0.907)
Before presenting the simulation evidence on the performance of the BDS test statistic, let

us first discuss the ML estimates of the GARCH parameters for each of the five models defined
above. Note that, since zt is Gaussian, in view of the analytical results of Jensen and Rahbek
(2003), there is no reason to believe that consistency is threatened in any of these cases. Panel
A of Table 1 reports the mean absolute bias of the ML estimates of µ and δ for Models I to V.7

This evidence confirms the theoretical results, suggesting that the ML estimates of µ and δ are
consistent, regardless of whether the process ut is stationary or possesses any moments. More
interestingly, the bias of both µ and δ is decreasing as we move from region 1 to region 5 for almost
all the sample sizes considered, especially so for T = 100.8 This seems to support the Jensen and

6Throughout the simulations we set the constant term ω such that the unconditional variances (where they are
defined) are the same across different simulations.

7We also report the mean absolute bias of the QML estimates as a percentage of the true value of the parameters
(Panel B of Table 1) in order to facilitate the comparison between the results of the alternative distributions
considered in the simulation.

8The standard deviation of the ML estimates of the GARCH parameters decreases with the persistence of the
process. The results are not reported to save space.
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Rahbek (2003) claim that the rate of convergence of the ML estimates seems to increase as we
move towards the nonstationary region. However, the finite sample bias of the ML estimates
(especially for T = 100) may influence the distribution and the size properties of BDS.
We now turn to the main focus of our analysis, that is the behaviour of the BDS test, applied

to the logged squared standardized residuals. As mentioned earlier, we also examine the behaviour
of the BDS∗ test applied to the untransformed squared residuals for comparison with the existing
results from the literature, and in particular with those in Brock et al. (1991). For brevity we
report in Table 2 only the results for m = 2, 5 and 8 (the full set of results is available upon
request). Those for the BDS∗ test are in the parentheses under the corresponding ones for the
BDS test. In summary, we find the following:

1.When the non-logged standardized residuals are used, the distribution of theBDS∗ is substantially
different from the N(0, 1) distribution. More specifically, it always has a negative mean, while
the standard deviation is less than unity in most cases. In addition, it is positively skewned and
leptokurtic, especially for large values ofm. Moreover, it moves away from theN(0, 1) distribution
as the sample size increases - this can be clearly seen in Figure 2, which shows the distribution
of the BDS∗ test for different sample sizes. As a result, the performance of the BDS∗ test is
very poor. In general, it is under-sized and seems to become more conservative as the sample size
increases. This is the case for all the values of m considered and for all the values of ε/σ except
for ε/σ = 0.5, when the BDS∗ test appears to be heavily over-sized for large m, even in large
samples. This picture is qualitative similar to the one emerging from previous studies (Brock et al.
(1991) and Brooks and Henry (2000)). In addition, we observe that the size-distortions remain the
same throughout the (µ, δ) parameter space, ranging from region 1 to region 5 (previous studies
examined only the case where fourth order stationarity holds).

2.When the log-transformation is implemented, the picture changes dramatically. As far as the
distribution of the BDS test is concerned, it transpires from Table 3 that it tends to the standard
normal distribution as the sample size increases.9 This is more evident in Figure 3, which shows
the distribution of the BDS test for different sample sizes (region 1): it is clear that it approaches
the N(0, 1) distribution as T increases (for T = 1000 the two distributions are almost identical).
However, for small sample sizes we observe a negative mean and a standard deviation which is
larger than unity. The distribution is also positively skewed and leptokurtic for large values of m.
This divergence between the distribution of the BDS test and the N(0, 1) seems to be caused by
the relatively substantial bias of the ML estimates for T = 100. Moreover, the moment properties
of the process do not seem to affect the the distribution of the BDS test. Figure 4 shows it for
the first and fifth region (T = 1000). In both cases it is very close to N(0, 1). As a result of these
distributional characteristics, the BDS test does not suffer from any serious size distortions for
sample sizes T ≥ 250 and for any values of m and ε/σ (except for the small value ε/σ = 0.5).

In brief, the simulation results suggest that some of the assumptions used by De Lima to derive
the nuisance-parameter free property of the BDS test may not be necessary. More specifically,
the assumption that zt ∼ N(0, 1) ensures that, for all the five regions considered, the consistency
of the ML estimates of the GARCH parameters is preserved, that is Assumption D is satisfied
throughout the simulations, and so is Assumption E. Similarly, Assumption C is satisfied in all
cases. However, De Lima assumes second order stationarity (i.e. µ + δ < 1) to ensure that
Assumption B holds. In the case of covariance stationarity, so does Assumption A. If however,
µ+δ ≥ 1, then these assumptions (A and B) might not be valid, in fact Assumption A is violated,
since the process is not b−mixing. Our simulation results, however, suggest that the validity of
these assumptions is not necessary for the BDS test to be nuisance-parameter free. In fact, its

9For brevity, we report only the results for ε/σ = 1 and 1.5. All the other results are available on request.
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distribution is close to N(0, 1) even in cases that belong to region 5, that is for processes that
have no unconditional moments and for which the memory condition is far from being satisfied.
As we can see in Table 3 and Figure 4, in the case of a mildly explosive process with infinite mean
(i.e. region 5) the distribution of the BDS test is similar to that of a process with finite fourth
moments (i.e. region 1), and the test does not suffer from any size distortions. On the other hand,
any distributional divergence from N(0, 1) is associated with a relatively substantial bias of the
ML estimator, which in turn implies that the good quality of these estimates is very important
for the behaviour of the BDS test.
So far, the assumption of Gaussian innovations ensures the finiteness of the fourth moment

of zt, which is a sufficient condition for the consistency of the QML estimator of the GARCH
parameters (Jensen and Rahbek (2003)). In the following subsection, we relax the assumption of
a finite fourth moment of the innovation term by allowing zt to follow a Student’s t-distribution
with 3 and 4 degrees of freedom. In this way, we test the necessity of this assumption to achieve
consistency of the QML estimator. If this is lost, Assumption D of De Lima (1996) is violated
and the nuissance-parameter free property of BDS may not hold.

4.2 Symmetric, heavy-tailed distributions: The case of t-innovations
In this set of experiments, we assume that the innovations zt follow a standardized t-distribution
with κ degrees of freedom, that is zt = (ξt/

p
k/k − 2), where ξt is an i.i.d. t(k) variate. The

new distributional assumption implies that some of the aforementioned cases (I) to (V) are no
longer defined. Indeed, the number of valid cases, under t-innovations, depends on the degrees-
of-freedom parameter, k. In particular, for k = 5, all the cases (I)-(V) exist. For k = 4 and
k = 3, fourth moments of the innovations do not exist, which in turn implies that case I is not
defined. As their finiteness was the condition imposed by Jensen and Rahbek (2003) to prove the√
T−consistency of the QML estimates, it is clearly of interest to examine the properties of such

estimates and of the BDS statistic under these circumstances. Figure 5 defines the corresponding
cases 2 to 5 for k = 4.
We first investigate the consistency property of the QML estimates of θ when zt follows a stan-

dardized t(3)− or t(4)−distribution. In general, the results are similar for the two distributions;
therefore, we only report the results for the latter. We consider values of (µ, δ) corresponding to
case II to V, and, once again, we report the results for only one pair of values for each region.
More specifically, the models under investigation are the following:
Model VI: (µ, δ) = (0.1 , 0.8)
Model VII: (µ, δ) = (0.1 , 0.9)
Model IIX: (µ, δ) = (0.1 , 0.91)
Model IX: (µ, δ) = (0.1 , 0.915)
The mean absolute bias of the GARCH parameters for these four models is given in Table

1 (fifth and sixth column). It clearly decreases with the sample size. Therefore, consistency
seems to hold even though the innovations do not possess a finite fourth moment. In other
words, the simulations provide evidence that the existing conditions for

√
T−consistency of the

QML estimates of θ may be relaxed.10 Similarly to the Gaussian case, the bias of both µ and δ
decreases as we move from region 2 to region 5 for almost all the sample sizes considered. Once
again, convergence seems to be faster for the mildly explosive processes (that is for regions 4 and
5). Finally, the bias and the standard deviation of the estimates are higher in the case of the
t(3)− distribution compared to the one of the t(4)−distribution.
10It is important to note that Jensen and Rahbek (2003) assume a finite fourth moment of the innovation zt to

establish both consistency and normality of the QML estimator of the GARCH parameters. Our results indicate
that this assumption may be unnecessarily strict to achieve consistency. Lee and Hansen (1994, Theorem 2, pp.
37) prove the consistency of the QML estimator by assuming finiteness of the second moment of zt. However, their
proof is based on the additional assumption that µ+ δ < 1.
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We now examine the size properties of the BDS statistic. The results for both BDS and
BDS∗ are presented in Table 4, and, on the whole, are similar to those for the Gaussian case.
That is, the BDS∗ test is in general undersized and it becomes more conservative as the sample
size increases. Once again, for ε/σ = 0.5 and for large m, it is heavily oversized. On the other
hand, the implementation of the log-transformation restores the good size properties of the test,
especially for T ≥ 500 and ε/σ = 1 and 1.5.11 The size behaviour of the BDS (and BDS∗) test
reßects the distributional features of these statistics. Figure 6 presents its distribution for T = 100
and 500. It is clear that this gets closer to N(0, 1) as the sample size increases. However, it is now
often more leptokurtic than in the case of Gaussian innovations. Furthermore, for large values
of m, it is positively skewned. For example, for the conÞguration (ε/σ,m, T ) = (1, 8, 100) and
for the IGARCH process, its skewness and kurtosis when zt ∼ t(4) is 1.17 and 6.26 respectively,
compared to 0.91 and 4.71 in the Gaussian case. These minor distortions in the distribution of the
test are again associated with the relatively higher biases observed in the QML estimates of the
GARCH parameters. Finally, the behaviour of the test is invariant to the moment and memory
characteristics of the process.
In summary, in the four models considered in this second set of simulations, the validity of

De Lima�s conditions is guaranteed only for model VI. More speciÞcally, in this case µ + δ < 1,
suggesting that Assumptions A and B hold. Moreover, the QML estimator is consistent (see
Theorem 2, pp. 37, in Lee and Hansen(1994)). Finally, Assumptions C and E are also valid.
On the other hand, the other three models considered violate Assumption A and Assumption B
is not guaranteed. Furthermore, the consistency of the QML estimates (Assumption D) is not
certain, since µ + δ ≥ 1 and the innovations do not possess Þnite fourth moments. Therefore,
the nuisance-parameter free property of the BDS test is threatened for models VII, IIX and IX.
However, the simulation results indicate that it approximates well the N(0, 1) distribution for
T ≥ 500, suggesting that De Lima�s conditions may be unnecessarily strict. Similarly, it appears
that the existing conditions for the consistency of the QML estimates may be relaxed. It is
important to note that although consistency of the QML estimator seems to holds, the small
sample (T ≤ 250) bias of the estimates is now higher compared to the Gaussian case, resulting in
greater small size distortions of the BDS test.

4.3 Asymmetric Distributions: The case of χ2 innovations
So far, we have considered innovations that follow a symmetric distribution. We now analyze
the behaviour of the BDS statistic when the innovations zt have an asymmetric distribution.
Asymptotic theory suggests that this does not affect the consistency of the QML estimator.
However, it might affect the Þnite sample properties of the estimates. To shed some light on this
issue, we carry out some additional simulations in which the innovations zt follow a standardized
χ2−distribution, that is zt = ξt−1√

2
, where ξt is an i.i.d. χ2(1) variate. Under this assumption, all

Þve cases (I to V) are meaningful. Figure 7 shows the corresponding regions in the (µ, δ) plane.
We consider the following models:
Model X: (µ, δ) = (0.1 , 0.8)
Model XI: (µ, δ) = (0.1 , 0.85)
Model XII: (µ, δ) = (0.1 , 0.9)
Model XIIV: (µ, δ) = (0.1 , 0.91)
Model XIV: (µ, δ) = (0.1 , 0.92)
Table 1 (columns 7 and 8) contains the mean absolute bias of the estimates of µ and δ for these

models. As before, the mean absolute bias of the QML estimators decreases with the sample size
and with the persistence of the process. It is much higher compared to the Gaussian case for all the

11In the case of the t(3)−distribution, the sizes of the BDS test are about 1 to 2 percentage points higher than
those of the t(4)−distribution.
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sample sizes considered. However, the rate of convergence in the case of the χ2−distribution looks
faster than that in the other distributions considered. This is evident in Figure 8, which presents
the mean absolute bias of the QML estimator of µ for different sample sizes and distributions. For
small samples, the bias in the case of the χ2−distribution is higher than that in the case of the
t(3)− or t(4)−distribution. However, as the sample size increases, it becomes similar or even lower
than in the case of the t(3)− or t(4)−distribution, due to the faster rate of convergence. It seems
that the asymmetric distribution of zt has a negative effect on the accuracy of the estimates of
the GARCH parameters in small samples. Nevertheless, the QML estimator remains consistent.
The results for the size properties of the BDS and BDS∗ tests are presented in Table 5.

Although the bias of the QML estimators is larger in the case of the χ2 compared to that of
the Normal distribution (especially in small samples), the size of the BDS test is similar in
the two cases. However, its good size properties are deceptive. A thorough investigation of
its distribution reveals this differs substantially from the standard normal for T ≤ 250. More
specifically, it has a positive mean and is also positively skewed and leptokurtic. As a result,
the majority of the rejections of the null hypothesis are right-sided percentage rejections. For
example, for the configuration (ε/σ,m, T ) = (1, 5, 100) and for the IGARCH process, the BDS
test produces a value greater than 1.96 at a frequency of 6.45 percent. On the other hand, the
left-sided percentage rejections are only 1.50. Once again, we find evidence of a close association
between the bias of the QML estimates and the behaviour of the BDS test. Nevertheless, the
distribution of the statistic approaches N(0, 1) as the sample size increases (given that ε/σ ≥ 1).

5 Conclusions
In this study we carry out Monte Carlo simulations to examine the behaviour of the widely used
Brock, Dechert and Scheinkman (BDS) test when applied to either the standardized residuals
or the logs of the standardized residuals of an estimated GARCH(1,1) model as a test for the
adequacy of this specification. More in detail, we consider a variety of distributions for the inno-
vations (implying different moment and memory characteristics of the error term) to examine the
“necessity” of De Lima’s (1996) conditions for the invariance property of the BDS test. Further-
more, we investigate the finite sample performance of the BDS test. As a by-product, we examine
the related issues of consistency and small sample bias of the QML estimators of the GARCH
parameters.
The results indicate that the BDS test is generally well-behaved when applied to the logarithm

of the standardized residuals of a GARCH(1,1) model. Its distribution approximates the standard
normal distribution for T ≥ 1000 and we do not observe any size distortions for large samples.
Moreover, the behaviour of the BDS test does not seem to be affected by the moment properties
of the series under scrutiny. Its distribution tends to N(0, 1) even for mildly explosive processes
that violate some of De Lima’s (1996) conditions for the nuissance-parameter free property of the
BDS test. Thus, our results suggest that De Lima’s (1996) assumptions on mixing and covariance
stationarity to prove the nuissance-parameter free property of the BDS test may be unnecessarily
strict.
As far as the small sample behaviour of BDS is concerned, the simulations reveal that this is

closely related to the finite sample performance of the QML estimator of the GARCH parameters.
More specifically, the small sample bias of the QML estimator (especially for T ≤ 250) results in
(small) size distortions of the BDS test. These are due to the skewed and leptokurtic distribution
that the BDS test has in such small samples. The small sample bias of the GARCH estimates
is greater when the innovation term of the process under examination follows a leptokurtic or
an asymmetric distribution. In such cases, the distribution of BDS needs larger sample sizes
to approximate well the N(0, 1) distribution. Finally, the consistency of the QML estimator of
the GARCH parameters seems to hold in all the cases considered, even when the Jensen’s and
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Rahbek’s (2003) condition that the innovation term should possess a finite fourth moment is
violated. Therefore, we provide evidence that the existing conditions for

√
T−consistency of the

QML estimates of the GARCH parameters can be relaxed.
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Table 1: A: Mean Absolute Bias (MAB) of the QML Estimates 
   B: MAB of the QML Estimates (as a percentage of the true parameter value) 

A  N(0,1) t(4) X2 

Case 
Sample 

Size 
 

µ 
 
δ 

 
µ 

 
δ 

 
µ 

 
δ 

I 

100 
250 
500 

1000 
2000 

 0.072 
 0.044 
 0.032 
 0.022 
 0.016 

 0.213 
 0.139 
 0.101 
 0.079 
 0.060 

--- 
--- 
--- 
--- 
--- 

--- 
--- 
--- 
--- 
--- 

 0.191 
 0.112 
 0.075 
 0.053 
 0.034 

 0.217 
 0.168 
 0.138 
 0.107 
 0.068 

IΙ 

100 
250 
500 

1000 
2000 

 0.061 
 0.034 
 0.022 
 0.016 
 0.011 

 0.177 
 0.060 
 0.027 
 0.017 
 0.011 

 0.135 
 0.088 
 0.061 
 0.048 
 0.032 

 0.209 
 0.156 
 0.121 
 0.095 
 0.062 

 0.189 
 0.100 
 0.071 
 0.047 
 0.031 

 0.231 
 0.152 
 0.107 
 0.070 
 0.043 

IΙΙ 

100 
250 
500 

1000 
2000 

 0.060 
 0.033 
 0.023 
 0.014 
 0.010 

 0.146 
 0.053 
 0.026 
 0.014 
 0.010 

 0.102 
 0.058 
 0.041 
 0.030 
 0.023 

 0.200 
 0.082 
 0.046 
 0.027 
 0.019 

 0.165 
 0.099 
 0.058 
 0.038 
 0.024 

 0.233 
 0.118 
 0.063 
 0.036 
 0.021 

IV 

100 
250 
500 

1000 
2000 

 0.056 
 0.032 
 0.022 
 0.014 
 0.010 

 0.135 
 0.045 
 0.024 
 0.014 
 0.009 

 0.103 
 0.055 
 0.041 
 0.029 
 0.020 

 0.193 
 0.070 
 0.040 
 0.024 
 0.016 

 0.178 
 0.099 
 0.059 
 0.035 
 0.022 

 0.241 
 0.115 
 0.057 
 0.029 
 0.017 

V 

100 
250 
500 

1000 
2000 

 0.055 
 0.032 
 0.022 
 0.015 
 0.010 

 0.122 
 0.041 
 0.022 
 0.013 
 0.009 

 0.100 
 0.052 
 0.036 
 0.027 
 0.021 

 0.181 
 0.064 
 0.034 
 0.021 
 0.015 

 0.165 
 0.091 
 0.057 
 0.031 
 0.020 

 0.234 
 0.093 
 0.045 
 0.022 
 0.014 

B  N(0,1) t(4) X2 

Case 
Sample 

Size 
 

µ 
 
δ 

 
µ 

 
δ 

 
µ 

 
δ 

I 

100 
250 
500 

1000 
2000 

72,233 
44,468 
31,947 
22,205 
16,124 

25,092 
16,303 
11,878 
9,238 
7,114 

--- 
--- 
--- 
--- 
--- 

--- 
--- 
--- 
--- 
--- 

191,246 
112,135 
74,546 
52,619 
34,483 

27,184 
21,017 
17,227 
13,337 
8,451 

IΙ 

100 
250 
500 

1000 
2000 

60,787 
33,964 
22,499 
15,602 
10,959 

19,726 
6,695 
3,042 
1,868 
1,253 

135,110 
88,127 
60,795 
47,784 
32,383 

26,129 
19,528 
15,161 
11,841 
7,725 

189,386 
100,156 
70,663 
46,531 
31,193 

27,208 
17,830 
12,614 
8,187 
5,091 

IΙΙ 

100 
250 
500 

1000 
2000 

59,962 
32,729 
22,843 
14,114 
10,360 

16,178 
5,837 
2,930 
1,596 
1,107 

101,889 
58,302 
41,470 
29,863 
23,040 

22,215 
9,080 
5,083 
3,015 
2,161 

165,375 
98,690 
58,008 
38,219 
24,055 

25,877 
13,128 
7,035 
4,046 
2,369 

IV 

100 
250 
500 

1000 
2000 

56,240 
32,435 
22,258 
14,408 
10,113 

14,957 
5,022 
2,609 
1,535 
1,010 

102,562 
55,372 
41,243 
29,206 
19,822 

21,166 
7,654 
4,424 
2,614 
1,708 

178,027 
98,699 
58,879 
34,949 
22,317 

26,492 
12,617 
6,288 
3,166 
1,894 

V 

100 
250 
500 

1000 
2000 

54,582 
31,738 
22,297 
14,559 
10,002 

13,446 
4,547 
2,457 
1,464 
0,986 

99,782 
52,100 
35,714 
27,417 
20,908 

19,796 
6,962 
3,705 
2,289 
1,656 

164,614 
91,151 
56,802 
31,217 
20,246 

25,406 
10,103 
4,879 
2,433 
1,478 
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Table 2: Size of BDS (and BDS* in parentheses) for the N(0,1) Distribution 
  ε/σ=0.5 ε/σ =1 ε/σ =1.5 ε/σ =2 

Case T m 2 5 8 2 5 8 2 5 8 2 5 8 
100  11.65  22.60  42.70  7.85  8.45  8.80  8.50  8.65  7.50  8.40 10.05 11.00 

 (17.95) (47.20) (66.10) (5.65) (6.30) (14.70) (4.50) (2.10) (3.55) (6.20) (3.25) (3.65) 
250  7.45  13.15  37.75  5.30  5.30  5.25  5.50  6.25  6.10  6.60  6.80  7.90 

 (7.70) (28.10) (74.35) (1.85) (1.05) (3.70) (1.35) (0.35) (0.40) (2.25) (0.70) (0.25) 
500  6.15  9.05  25.90  5.75  6.25  6.00  5.40  5.65  5.30  5.10  4.75  4.95 

 (3.85) (15.25) (59.60) (1.55) (0.65) (1.75) (1.50) (0.15) (0.05) (1.00) (0.10) (0.10) 
1000  5.75  7.10  15.55  5.60  5.80  5.35  6.10  5.70  4.70  5.05  5.05  4.60 

 (2.55) (6.55) (48.25) (1.70) (0.25) (0.40) (1.10) (0.10) (0.05) (1.15) (0.05) (0.00) 
2000  5.40  6.10  11.00  5.10  4.70  4.95  5.35  5.25  5.35  5.80  6.20  5.25 

I 

 (2.20) (2.20) (33.80) (1.55) (0.10) (0.20) (0.85) (0.00) (0.00) (0.85) (0.00) (0.00) 
 

100  12.45  23.15  40.60  8.00  8.55  9.20  8.30  9.15  9.50 11.25 10.45 11.00 
 (20.10) (45.65) (68.70) (5.90) (6.55) (15.80) (4.15) (2.20) (3.30) (7.35) (4.00) (4.50) 

250  7.95  12.75  37.95  5.45  5.50  5.65  6.90  6.60  5.80  7.15  8.30  6.95 
 (9.30) (30.25) (73.95) (3.70) (2.05) (4.35) (3.55) (1.10) (0.70) (4.80) (1.30) (0.55) 

500  7.05  8.55  26.25  5.10  5.15  5.00  5.65  6.25  6.10  5.55  5.35  5.75 
 (5.70) (16.55) (61.65) (3.10) (1.85) (1.90) (3.45) (0.60) (0.40) (4.15) (0.75) (0.25) 

1000  5.85  7.20  16.00  4.80  5.45  5.55  4.30  4.95  4.75  5.05  5.65  5.85 
 (4.60) (9.20) (49.15) (3.75) (0.70) (1.00) (3.10) (0.75) (0.05) (3.55) (0.85) (0.10) 

2000  4.85  5.55  11.15  4.35  5.30  4.75  5.50  4.55  4.30  4.90  5.65  5.95 

II 

 (4.05) (4.20) (34.85) 

 

(3.60) (1.00) (0.65) 

 

(2.40) (0.55) (0.10) 

 

(2.90) (0.30) (0.00) 
 

100  11.75  23.45  38.50  8.30  8.15  10.30  8.55  8.95  8.55  9.40 10.95 11.45 
 (21.25) (48.05) (71.30) (6.15) (6.50) (15.30) (5.10) (1.70) (2.60) (6.80) (3.95) (3.45) 

250  8.05  12.75  35.80  5.75  6.35  6.55  6.40  5.65  5.35  6.35  6.30  6.80 
 (8.60) (28.55) (76.45) (3.60) (3.20) (4.85) (3.75) (1.00) (0.65) (4.15) (1.55) (0.70) 

500  7.10  8.90  24.80  5.25  4.80  5.00  4.85  4.65  4.80  5.25  5.80  5.20 
 (6.50) (18.10) (59.95) (4.15) (1.55) (2.20) (4.20) (0.90) (0.30) (4.35) (1.10) (0.15) 

1000  5.30  6.60  15.40  6.00  5.40  5.70  5.15  5.05  5.70  5.85  6.25  5.60 
 (5.30) (9.30) (49.75) (3.90) (1.20) (1.15) (3.75) (0.90) (0.25) (4.10) (1.00) (0.25) 

2000  5.30  5.85  12.30  5.30  5.30  4.45  5.25  5.25  5.15  5.25  5.50  6.15 

III 

 (4.05) (5.60) (34.50) 

 

(3.80) (1.10) (0.35) 

 

(3.25) (1.00) (0.30) 

 

(3.70) (0.70) (0.25) 
 

100  13.30  22.95  40.35  7.80  8.95  8.20  7.45  9.20  7.15 10.05 10.55 10.90 
 (19.60) (47.90) (68.50) (7.10) (6.55) (16.95) (5.70) (2.75) (3.40) (7.00) (4.90) (3.90) 

250  6.55  12.95  38.35  5.45  6.65  6.95  7.05  7.10  6.25  6.50  6.20  7.00 
 (10.75) (29.55) (76.20) (4.85) (2.55) (5.35) (4.80) (1.45) (0.55) (3.95) (1.30) (0.65) 

500  6.30  8.70  23.90  4.95  5.00  4.55  5.15  6.35  6.45  6.75  5.65  6.40 
 (6.75) (17.45) (63.45) (4.50) (2.10) (1.90) (3.55) (0.65) (0.35) (4.40) (1.60) (0.50) 

1000  5.10  5.95  16.25  5.45  5.35  4.65  6.30  6.30  6.40  4.60  5.20  5.45 
 (4.45) (9.35) (49.20) (3.15) (1.40) (1.35) (2.70) (0.55) (0.15) (3.90) (1.40) (0.05) 

2000  4.65  5.90  11.05  6.00  5.20  5.85  4.30  5.15  4.85  3.80  5.05  5.40 

IV 

 (4.10) (5.05) (35.20) 

 

(3.25) (0.95) (0.45) 

 

(3.30) (0.85) (0.35) 

 

(4.00) (1.25) (0.25) 
 

100  11.40  22.90  38.05  8.20  9.15  9.00  8.10  7.95  8.20 10.60 10.75 10.90 
 (19.55) (48.05) (71.20) (6.45) (6.95) (18.85) (5.05) (3.35) (3.60) (7.55) (4.40) (3.95) 

250  7.60  12.15  37.20  5.85  5.70  6.15  6.05  6.15  5.55  5.80  7.65  7.50 
 (11.50) (29.20) (76.85) (5.40) (2.70) (4.30) (3.70) (1.05) (0.75) (4.30) (2.20) (0.85) 

500  6.25  7.80  26.00  5.80  6.00  4.70  5.20  5.75  5.45  5.05  6.10  5.70 
 (5.95) (18.00) (60.00) (4.00) (2.00) (2.30) (3.80) (1.05) (0.50) (4.05) (0.95) (0.35) 

1000  6.20  6.30  17.35  5.55  5.60  5.00  5.25  5.25  5.40  4.90  5.05  4.95 
 (5.20) (10.45) (48.60) (3.60) (1.65) (1.40) (3.80) (1.35) (0.30) (3.05) (1.00) (0.20) 

2000  5.90  5.15  10.75  4.80  5.05  5.10  5.55  5.40  5.15  5.45  4.70  4.90 

V 

 (4.85) (5.50) (34.90) 

 

(3.80) (1.80) (1.30) 

 

(3.35) (0.95) (0.25) 

 

(3.10) (0.90) (0.20) 
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Table 3: Distribution of BDS (Gaussian Innovations) 
Case 

 I 
 

ε/σ =1 
 

ε/σ =1.5 
  

ε/σ =1 
 

ε/σ =1.5 
T=100 m=2 5 8 2 5 8 T=500 2 5 8 2 5 8 
<-1.96  4.30  3.85  3.45  4.45  5.15  4.05  2.85  3.00  2.15  2.40  2.75  2.50 

> 1.96  3.55  4.60  5.35  4.05  3.50  3.45  2.90  3.25  3.85  3.00  2.90  2.80 

Mean -0.15 -0.20 -0.19 -0.19 -0.29 -0.30 -0.06 -0.08 -0.06 -0.09 -0.11 -0.12 

St.Dev.  1.11  1.16  1.26  1.12  1.11  1.09  1.02  1.03  1.05  1.03  1.02  1.02 

Skewn.  0.23  0.68  1.36  0.29  0.35  0.53  0.19  0.19  0.52  0.28  0.27  0.29 

Kurt.  3.09  3.75  7.88 

 

 3.13  3.01  3.23  3.05  2.93  3.44 

 

 3.12  3.08  3.02 

 T=1000 T=2000 
<-1.96  2.60  2.75  1.85  2.50  2.50  2.15  2.70  2.25  2.10  2.60  2.55  2.45 

> 1.96  3.00  3.05  3.50  3.60  3.20  2.55  2.40  2.45  2.85  2.75  2.70  2.90 

Mean -0.03 -0.06 -0.06 -0.01 -0.05 -0.06 -0.04 -0.04 -0.04  0.04 -0.01 -0.03 

St.Dev.  1.01  1.01  1.03  1.04  1.01  1.00  1.00  1.00  1.01  1.03  1.02  1.01 

Skewn.  0.08  0.23  0.41  0.18  0.20  0.29  0.02  0.17  0.27  0.01  0.09  0.17 

Kurt.  3.08  2.99  3.08 

 

 3.09  3.26  3.32  2.96  3.02  3.10 

 

 2.94  3.11  3.03 

Case 
III 

 
T=100 

 
T=500 

<-1.96  4.45  4.15  4.65  4.75  5.25  4.25  2.40  1.85  1.45  2.55  2.15  2.05 

> 1.96  3.85  4.00  5.65  3.80  3.70  4.30  2.85  2.95  3.55  2.30  2.50  2.75 

Mean -0.16 -0.23 -0.23 -0.21 -0.26 -0.24 -0.07 -0.11 -0.11 -0.08 -0.11 -0.12 

St.Dev.  1.13  1.17  1.23  1.13  1.13  1.14  1.02  1.02  1.02  1.00  1.00  1.00 

Skewn.  0.31  0.59  0.91  0.29  0.34  0.52  0.17  0.37  0.62  0.21  0.28  0.34 

Kurt.  3.07  3.77  4.71 

 

 2.97  3.03  3.32  2.97  3.21  3.78 

 

 2.90  3.07  3.18 

 T=1000 T=2000 
<-1.96  2.90  2.70  1.90  2.35  2.20  2.30  2.75  2.70  1.65  2.60  2.40  2.60 

> 1.96  3.10  2.70  3.80  2.80  2.85  3.40  2.55  2.60  2.80  2.65  2.85  2.55 

Mean -0.08 -0.11 -0.09 -0.05 -0.07 -0.07 -0.03 -0.05 -0.05 -0.02 -0.04 -0.05 

St.Dev.  1.02  1.02  1.03  1.00  1.01  1.02  1.01  0.99  0.99  1.02  1.01  1.01 

Skewn.  0.16  0.29  0.51  0.18  0.21  0.31 -0.03  0.10  0.26  0.07  0.14  0.14 

Kurt.  3.22  3.18  3.34 

 

 3.02  2.96  3.05  2.96  2.91  2.99 

 

 3.21  2.97  3.01 

Case  
V 

 
T=100 

 
T=500 

<-1.96  4.60  4.30  3.10  4.45  4.40  4.05  2.60  2.60  1.05  2.85  3.10  2.70 

> 1.96  3.60  4.85  5.90  3.65  3.55  4.15  3.20  3.40  3.65  2.35  2.65  2.75 

Mean -0.18 -0.21 -0.17 -0.17 -0.24 -0.25 -0.05 -0.07 -0.08 -0.11 -0.13 -0.13 

St.Dev.  1.13  1.17  1.27  1.13  1.14  1.14  1.05  1.04  1.03  1.00  1.02  1.03 

Skewn.  0.30  0.61  1.29  0.36  0.47  0.67  0.24  0.30  0.50  0.16  0.19  0.31 

Kurt.  3.01  3.56  6.28 

 

 3.47  3.30  3.89  2.87  3.13  3.24 

 

 2.90  2.97  3.01 

 T=1000 T=2000 
<-1.96  2.75  2.70  1.80  2.85  2.15  2.25  2.85  1.85  1.75  2.10  2.30  2.50 

> 1.96  2.80  2.90  3.20  2.40  3.10  3.15  1.95  3.20  3.35  3.45  3.10  2.65 

Mean -0.07 -0.09 -0.09 -0.04 -0.04 -0.05 -0.06 -0.04 -0.03 -0.02 -0.02 -0.03 

St.Dev.  1.04  1.02  1.02  1.02  1.04  1.03  0.99  1.00  1.00  1.05  1.00  0.99 

Skewn.  0.13  0.12  0.33  0.06  0.20  0.27  0.05  0.19  0.29  0.15  0.17  0.17 

Kurt.  3.00  2.85  3.02 

 

 3.15  3.02  3.02 

 

 3.03  2.94  3.01 

 

 2.89  3.04  3.02 
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 Table 4: Size of BDS (and BDS* in parentheses) for the t(4)- Distribution 
  ε/σ =0.5 ε/σ =1 ε/σ =1.5 ε/σ =2 

Case T m 2 5 8 2 5 8 2 5 8 2 5 8 
100  13.65  26.65  43.40  9.30  10.00  10.85  8.45  8.50  8.25  9.90 10.65 11.15 

 (9.80) (21.20) (30.70) (4.70) (4.45) (6.35) (4.05) (2.85) (3.30) (4.55) (4.05) (3.05) 
250  7.60  15.60  44.15  6.80  6.50  7.50  6.60  5.30  5.05  7.35  8.20  7.80 

 (6.85) (11.55) (37.70) (5.20) (4.70) (5.95) (4.10) (3.25) (3.85) (2.40) (1.15) (1.25) 
500  7.85  10.55  33.30  6.30  5.70  5.55  6.20  5.95  6.25  5.60  6.05  6.45 

 (8.50) (12.05) (28.00) (6.30) (6.55) (7.85) (4.45) (4.50) (4.55) (3.25) (1.70) (1.65) 
1000  5.90  7.65  21.15  4.75  5.40  5.25  4.80  5.15  5.30  6.15  6.00  5.55 

 (9.40) (12.10) (23.25) (8.80) (9.30) (10.90) (5.65) (6.60) (7.15) (4.35) (4.15) (3.95) 
2000  5.60  6.65  14.50  5.20  6.50  6.45  4.75  4.55  5.15  4.45  5.25  4.90 

II 

 (9.15) (13.90) (18.95) (10.40) (13.25) (14.70) (7.60) (8.95) (8.95) (4.35) (4.90) (4.90) 
 

100  14.85  27.25  43.40  7.60  7.70  9.60  7.35 10.10  9.35 10.30 10.00 10.95 
 (10.85) (24.60) (35.25) (5.50) (4.20) (7.15) (4.65) (1.95) (2.30) (6.30) (3.15) (3.25) 

250  8.05  14.55  41.90  5.55  6.20  7.80  6.55  6.65  6.25  6.20  6.65  6.95 
 (7.20) (13.00) (40.35) (5.20) (4.95) (6.45) (4.30) (3.15) (2.70) (3.00) (2.10) (2.00) 

500  6.85  10.45  33.65  6.35  5.80  5.95  5.35  5.75  5.25  6.85  6.60  7.00 
 (7.15) (12.35) (28.95) (5.00) (6.95) (7.95) (5.85) (4.85) (5.15) (3.85) (3.40) (2.90) 

1000  7.05  7.80  22.30  5.30  4.90  5.60  5.45  5.90  5.85  5.50  4.85  5.15 
 (5.85) (10.50) (20.45) (7.10) (8.65) (9.05) (6.35) (6.00) (6.65) (5.20) (3.90) (4.30) 

2000  5.40  7.80  14.70  4.35  4.45  5.25  4.95  5.80  5.45  5.05  5.20  5.35 

III 

 (8.95) (11.45) (17.65) 

 

(7.15) (10.10) (10.80) 

 

(7.50) (8.55) (9.60) 

 

(5.60) (5.20) (4.85) 
 

100  13.45  27.10  44.15  7.10  8.35  10.00  8.70  8.80  8.65 10.75 10.80 11.75 
 (9.70) (26.15) (33.25) (5.25) (4.95) (7.00) (4.70) (2.20) (2.35) (5.80) (3.10) (3.45) 

250  8.00  15.00  44.50  6.55  6.95  7.25  7.10  7.15  7.20  6.50  6.55  7.25 
 (6.65) (13.40) (43.60) (4.95) (5.35) (6.90) (4.70) (2.45) (3.20) (4.35) (2.45) (1.30) 

500  6.95  10.80  32.25  4.90  4.90  6.00  6.20  5.45  5.00  5.50  5.90  6.65 
 (7.40) (12.55) (30.05) (7.35) (7.85) (9.70) (5.35) (4.95) (5.80) (4.05) (2.80) (2.75) 

1000  5.40  7.80  19.80  5.30  5.60  4.85  5.10  4.80  4.40  4.70  4.70  5.10 
 (7.40) (11.20) (21.10) (6.20) (8.60) (10.45) (6.50) (6.15) (7.55) (4.00) (4.20) (4.20) 

2000  4.85  7.30  13.55  5.30  5.65  5.90  5.25  4.75  5.05  5.30  5.30  4.55 

IV 

 (6.85) (10.15) (15.05) 

 

(7.05) (9.15) (11.35) 

 

(5.80) (7.20) (8.60) 

 

(4.90) (4.95) (5.10) 
 

100  14.00  27.20  43.90  9.45  8.70  11.15  9.20  9.25  8.70  9.90 11.65 11.95 
 (11.30) (26.20) (32.05) (4.95) (3.90) (7.20) (4.75) (2.20) (3.00) (5.95) (3.75) (3.90) 

250  7.85  14.90  44.90  6.45  6.45  7.00  6.60  6.25  6.00  6.90  6.80  6.35 
 (7.45) (13.85) (43.75) (5.45) (4.35) (6.50) (4.40) (3.70) (3.25) (3.90) (2.80) (1.90) 

500  6.55  9.15  31.30  6.00  6.00  5.10  5.70  5.50  4.80  6.05  5.65  5.85 
 (7.00) (11.10) (31.45) (5.70) (6.05) (7.05) (5.00) (5.20) (5.60) (4.00) (3.95) (2.95) 

1000  5.80  7.90  20.45  5.00  5.30  4.95  4.75  4.75  5.30  5.75  5.50  5.20 
 (7.10) (11.60) (23.35) (7.05) (9.10) (10.30) (5.40) (7.00) (7.80) (4.90) (4.65) (4.40) 

2000  4.35  5.75  12.90  4.60  5.05  5.00  5.10  5.90  5.50  5.05  5.20  5.05 

V 

 (6.15) (9.60) (16.75) 

 

(7.35) (9.15) (10.35) 

 

(5.80) (7.70) (9.40) 

 

(4.75) (4.80) (5.20) 
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Table 5: Size of BDS (and BDS* in parentheses) for the X2(1)- Distribution 
  ε/σ =0.5 ε/σ =1 ε/σ =1.5 ε/σ =2 

Case T m 2 5 8 2 5 8 2 5 8 2 5 8 
100 11.60  13.25  14.05  8.60  7.90  8.30  7.80  7.75  7.70  8.85 10.60 10.95 

 (7.10) (7.60) (9.80) (6.00) (4.60) (5.80) (5.20) (3.00) (3.05) (5.30) (4.15) (3.70) 
250  9.25  9.65  11.15  6.60  6.50  6.35  5.35  5.40  6.15  5.35  6.60  5.85 

 (5.70) (6.40) (8.60) (4.35) (3.65) (4.60) (3.60) (2.05) (2.20) (3.10) (1.45) (1.75) 
500  7.45  8.50  10.95  6.45  5.60  5.20  5.20  5.40  5.70  5.65  6.30  6.40 

 (5.95) (8.00) (8.35) (4.00) (5.30) (5.70) (3.30) (2.60) (2.85) (2.85) (1.35) (1.35) 
1000  5.55  5.50  6.95  4.95  5.15  6.00  4.75  4.65  5.15  5.45  5.20  5.60 

 (5.65) (5.80) (7.55) (4.80) (4.85) (4.60) (3.75) (3.45) (3.55) (2.55) (1.30) (1.50) 
2000  5.35  5.45  6.80  5.45  5.00  5.15  5.45  5.20  5.55  4.65  5.15  5.30 

I 

 (6.15) (6.40) (6.30) (5.25) (4.90) (4.85) (3.90) (3.95) (4.55) (2.95) (1.65) (1.45) 
 

100  12.05  13.85  15.40  9.20  8.10  8.25  7.40  8.45  7.95  9.35 10.00 11.40 
 (8.25) (9.20) (12.40) (5.70) (5.30) (5.95) (5.15) (3.45) (4.25) (5.20) (3.35) (3.70) 

250  8.35  9.45  11.75  7.50  7.35  7.15  6.70  6.40  6.65  6.30  6.95  7.05 
 (5.65) (6.55) (9.65) (4.80) (4.30) (5.20) (4.45) (3.30) (2.75) (3.10) (2.10) (1.85) 

500  7.15  7.25  9.55  6.30  6.25  5.85  6.20  5.80  5.60  6.15  6.15  6.15 
 (6.50) (7.95) (8.60) (5.80) (4.15) (4.10) (3.35) (3.05) (3.25) (3.20) (2.15) (1.90) 

1000  6.75  5.40  7.90  5.70  5.65  5.30  6.45  5.65  4.70  5.80  6.15  5.95 
 (6.10) (6.85) (7.60) (5.00) (4.95) (5.55) (3.45) (3.60) (2.80) (2.90) (2.15) (2.00) 

2000  5.75  5.10  6.15  4.65  5.00  4.90  5.10  5.10  4.90  5.45  5.25  4.85 

II 

 (5.35) (5.95) (6.50) 

 

(5.25) (5.10) (5.25) 

 

(4.05) (3.75) (3.40) 

 

(3.90) (2.45) (2.25) 
 

100 11.60  14.15  16.50  8.55  7.95  8.55  8.00  7.80  7.85  9.85  9.95 10.55 
 (7.90) (11.40) (14.00) (6.20) (4.45) (6.00) (5.30) (4.00) (4.35) (5.30) (3.70) (3.20) 

250  9.55  10.75  13.65  6.75  6.15  6.00  6.55  6.00  6.70  6.60  6.75  6.00 
 (6.55) (7.40) (10.30) (5.90) (5.40) (5.70) (3.80) (3.10) (3.20) (3.35) (2.50) (1.45) 

500  7.55  8.65  10.85  4.85  5.35  5.70  5.00  6.05  5.95  5.60  5.85  6.00 
 (5.30) (7.55) (8.85) (5.15) (4.50) (4.60) (5.10) (3.00) (2.95) (3.45) (2.80) (2.20) 

1000  5.85  5.15  6.30  5.35  5.35  5.60  4.75  5.95  5.10  4.35  5.20  5.20 
 (6.50) (5.40) (6.50) (7.00) (6.15) (5.85) (4.45) (3.65) (3.45) (3.90) (3.10) (2.25) 

2000  5.25  5.65  5.75  4.60  4.60  4.00  4.90  5.10  4.95  5.35  6.00  5.35 

III 

 (5.90) (6.00) (7.00) 

 

(5.50) (5.45) (5.70) 

 

(3.65) (3.30) (3.35) 

 

(4.10) (3.55) (2.35) 
 

100 11.65  13.80  17.10  8.80  8.00  8.35  7.95  8.55  8.95  8.55  9.30  9.70 
 (8.85) (8.95) (12.25) (6.20) (4.75) (5.35) (5.60) (3.30) (3.80) (6.10) (4.25) (3.55) 

250  8.90  12.05  14.30  5.75  5.70  6.60  5.25  5.45  5.55  5.85  6.40  6.70 
 (6.25) (7.95) (10.45) (4.15) (3.90) (4.55) (4.20) (3.45) (2.50) (3.65) (2.40) (2.35) 

500  7.90  9.30  11.30  6.05  6.10  6.10  5.60  5.25  5.05  5.10  5.90  5.60 
 (5.85) (6.40) (8.90) (4.55) (4.75) (4.55) (5.35) (3.85) (3.70) (4.05) (4.00) (3.40) 

1000  6.35  7.15  7.60  5.10  5.10  4.90  4.80  5.30  4.90  5.45  4.85  4.75 
 (5.35) (6.30) (7.10) (5.05) (4.45) (5.45) (4.95) (4.15) (4.30) (4.05) (2.85) (2.05) 

2000  5.55  4.90  5.80  5.20  5.00  5.15  4.75  5.30  5.75  5.20  6.05  6.15 

IV 

 (5.40) (5.55) (6.10) 

 

(5.10) (5.65) (5.85) 

 

(3.70) (4.50) (4.05) 

 

(3.95) (3.25) (2.45) 
 

100 10.45  12.75  16.25  9.70  8.45  8.50  7.30  8.75  8.90  8.85  9.70 10.75 
 (7.10) (9.60) (13.35) (6.70) (5.20) (6.60) (4.70) (3.50) (4.55) (6.50) (3.45) (3.50) 

250  8.05  10.80  14.10  5.65  6.15  5.80  5.50  7.20  6.70  5.90  7.05  7.10 
 (6.05) (8.25) (11.20) (4.75) (4.10) (4.10) (4.10) (3.35) (2.75) (3.80) (3.45) (2.15) 

500  7.65  8.85  10.40  5.70  5.40  5.10  5.10  4.95  5.10  6.45  6.90  6.30 
 (6.80) (6.65) (8.90) (5.10) (5.50) (6.35) (5.10) (4.05) (3.40) (4.00) (3.85) (3.10) 

1000  6.60  7.90  8.20  6.00  6.05  5.05  5.30  5.15  5.75  4.55  5.00  5.85 
 (5.60) (4.80) (6.15) (6.65) (5.70) (5.40) (5.30) (5.25) (4.85) (4.75) (3.90) (2.80) 

2000  6.15  5.55  6.00  5.30  4.95  4.35  5.20  5.35  4.70  4.35  5.60  5.50 

V 

 (4.60) (6.65) (6.95) 

 

(4.90) (4.20) (4.40) 

 

(4.60) (3.55) (3.75) 

 

(4.15) (3.65) (2.90) 
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Figure 1: Regions for the N(0,1) distribution 
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Figure 2: Distribution of BDS* (Gaussian Innovations, Region 1, ε/σ=1, m=2) 
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Figure 3: Distribution of BDS (Gaussian Innovations, Region 1, ε/σ =1, m=2) 
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Figure 4: Distribution of BDS (Gaussian Innovations, T=1000, ε/σ =1, m=2) 
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Figure 5: Regions for the t(4)-distribution 
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Figure 6: Distribution of BDS* (t(4)-Distribution, Region 1, ε/σ =1, m=2) 
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Figure 7: Regions for the χ2(1)-distribution 
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Figure 8: Percentage Mean Absolute Bias of the QML Estimator of µ (Region 2) 
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