248 research outputs found

    An Intact Kidney Slice Model to Investigate Vasa Recta Properties and Function in situ

    Get PDF
    Background: Medullary blood flow is via vasa recta capillaries, which possess contractile pericytes. In vitro studies using isolated descending vasa recta show that pericytes can constrict/dilate descending vasa recta when vasoactive substances are present. We describe a live kidney slice model in which pericyte-mediated vasa recta constriction/dilation can be visualized in situ. Methods: Confocal microscopy was used to image calcein, propidium iodide and Hoechst labelling in ‘live’ kidney slices, to determine tubular and vascular cell viability and morphology. DIC video-imaging of live kidney slices was employed to investigate pericyte-mediated real-time changes in vasa recta diameter. Results: Pericytes were identified on vasa recta and their morphology and density were characterized in the medulla. Pericyte-mediated changes in vasa recta diameter (10–30%) were evoked in response to bath application of vasoactive agents (norepinephrine, endothelin-1, angiotensin-II and prostaglandin E2) or by manipulating endogenous vasoactive signalling pathways (using tyramine, L-NAME, a cyclo-oxygenase (COX-1) inhibitor indomethacin, and ATP release). Conclusions: The live kidney slice model is a valid complementary technique for investigating vasa recta function in situ and the role of pericytes as regulators of vasa recta diameter. This technique may also be useful in exploring the role of tubulovascular crosstalk in regulation of medullary blood flow

    Interleukin-21 in cancer immunotherapy: Friend or foe?

    Get PDF
    Interleukin (IL)-21, a cytokine produced by activated conventional CD4+ T lymphocytes and Natural Killer T cells, drives anti-tumor immunity in the skin and kidney. However IL-21 is also pro-inflammatory in many tissues and promotes colitis-associated colon cancer. Understanding the biology of IL-21 in these different situations is needed to ensure maximal therapeutic benefit

    TRAF3IP2 gene is associated with cutaneous extraintestinal manifestations in Inflammatory bowel disease

    Get PDF
    Background and aims: Genome-wide association (GWA) studies recently identified a novel gene, TRAF3IP2, involved in the susceptibility to psoriasis. Common immune-mediated mechanisms involving the skin or the gut have been suggested. We therefore aimed to assess the role of TRAF3IP2 gene in IBD, with particular regard to the development of cutaneous extraintestinal manifestations (pyoderma gangrenosum, erythema nodosum). The association with psoriasis was also assessed in a secondary analysis. Methods: The analysis included 267 Crohn's disease (CD), 200 ulcerative colitis (UC) patients and 278 healthy controls. Three TRAF3IP2 SNPs were genotyped by allelic discrimination assays. A case/control association study and a genotype/phenotype correlation analysis have been performed. Results: All three SNPs conferred a high risk to develop cutaneous manifestations in IBD. A higher risk of pyoderma gangrenosum and erythema nodosum was observed in CD patients carrying the Rs33980500 variant (OR 3.03; P=0.026)In UC, a significantly increased risk was observed for both the Rs13190932 and the Rs13196377 SNPs (OR 5.05; P=0.02 and OR 4.1; P=0.049). Moreover, association of TRAF3IP2 variants with ileal (OR = 1.92), fibrostricturing (OR = 1.91) and perianal CD (OR = 2.03) was observed. Conclusions: This is the first preliminary report indicating that TRAF3IP2 variants increase the risk of cutaneous extraintestinal manifestations in IBD suggesting that the analysis of the TRAF3IP2 variants may be useful for identifying IBD patients at risk to develop these manifestations. © 2012 European Crohn's and Colitis Organisation

    Renal pericytes: regulators of medullary blood flow

    Get PDF
    Regulation of medullary blood flow (MBF) is essential in maintaining normal kidney function. Blood flow to the medulla is supplied by the descending vasa recta (DVR), which arise from the efferent arterioles of juxtamedullary glomeruli. DVR are composed of a continuous endothelium, intercalated with smooth muscle-like cells called pericytes. Pericytes have been shown to alter the diameter of isolated and in situ DVR in response to vasoactive stimuli that are transmitted via a network of autocrine and paracrine signalling pathways. Vasoactive stimuli can be released by neighbouring tubular epithelial, endothelial, red blood cells and neuronal cells in response to changes in NaCl transport and oxygen tension. The experimentally described sensitivity of pericytes to these stimuli strongly suggests their leading role in the phenomenon of MBF autoregulation. Because the debate on autoregulation of MBF fervently continues, we discuss the evidence favouring a physiological role for pericytes in the regulation of MBF and describe their potential role in tubulo-vascular cross-talk in this region of the kidney. Our review also considers current methods used to explore pericyte activity and function in the renal medulla

    On the genetic involvement of apoptosis-related genes in Crohn's disease as revealed by an extended association screen using 245 markers: no evidence for new predisposing factors

    Get PDF
    Crohn's disease (CD) presents as an inflammatory barrier disease with characteristic destructive processes in the intestinal wall. Although the pathomechanisms of CD are still not exactly understood, there is evidence that, in addition to e.g. bacterial colonisation, genetic predisposition contributes to the development of CD. In order to search for predisposing genetic factors we scrutinised 245 microsatellite markers in a population-based linkage mapping study. These microsatellites cover gene loci the encoded protein of which take part in the regulation of apoptosis and (innate) immune processes. Respective loci contribute to the activation/suppression of apoptosis, are involved in signal transduction and cell cycle regulators or they belong to the tumor necrosis factor superfamily, caspase related genes or the BCL2 family. Furthermore, several cytokines as well as chemokines were included. The approach is based on three steps: analyzing pooled DNAs of patients and controls, verification of significantly differing microsatellite markers by genotyping individual DNA samples and, finally, additional reinvestigation of the respective gene in the region covered by the associated microsatellite by analysing single-nucleotide polymorphisms (SNPs). Using this step-wise process we were unable to demonstrate evidence for genetic predisposition of the chosen apoptosis- and immunity-related genes with respect to susceptibility for CD
    corecore