1,989 research outputs found
Numerical electrokinetics
A new lattice method is presented in order to efficiently solve the
electrokinetic equations, which describe the structure and dynamics of the
charge cloud and the flow field surrounding a single charged colloidal sphere,
or a fixed array of such objects. We focus on calculating the electrophoretic
mobility in the limit of small driving field, and systematically linearise the
equations with respect to the latter. This gives rise to several subproblems,
each of which is solved by a specialised numerical algorithm. For the total
problem we combine these solvers in an iterative procedure. Applying this
method, we study the effect of the screening mechanism (salt screening vs.
counterion screening) on the electrophoretic mobility, and find a weak
non-trivial dependence, as expected from scaling theory. Furthermore, we find
that the orientation of the charge cloud (i. e. its dipole moment) depends on
the value of the colloid charge, as a result of a competition between
electrostatic and hydrodynamic effects.Comment: accepted for publication in Journal of Physics Condensed Matter
(proceedings of the 2012 CODEF conference
Outbursts of EX Hydrae: mass-transfer events or disc instabilities?
We present the 45-yr record of the light curve of EX Hya, and discuss the characteristics of its 15 observed outbursts. We then concentrate on the 1998 outburst, reporting the first outburst X-ray observations. We discover an X-ray beat-cycle modulation, indicating that an enhanced accretion stream couples directly with the magnetosphere in outburst, confirming our previous prediction. Optical eclipse profiles late in outburst show that the visible light is dominated by an enhanced mass-transfer stream overflowing the accretion disc. We are uncertain whether the enhanced mass transfer is triggered by a disc instability, or by some other cause. While in outburst, EX Hya shows some of the characteristics of SW Sex stars
Solar System Objects in the ISOPHOT 170 micron Serendipity Survey
The ISOPHOT Serendipity Survey (ISOSS) covered approximately 15 % of the sky
at a wavelength of 170 micron while the ISO satellite was slewing from one
target to the next. By chance ISOSS slews went over many solar system objects
(SSOs). We identified the comets, asteroids and planets in the slews through a
fast and effective search procedure based on N-body ephemeris and flux
estimates. The detections were analysed from a calibration and scientific point
of view. Through the measurements of the well-known asteroids Ceres, Pallas,
Juno and Vesta and the planets Uranus and Neptune it was possible to improve
the photometric calibration of ISOSS and to extend it to higher flux regimes.
We were also able to establish calibration schemes for the important slew end
data. For the other asteroids we derived radiometric diameters and albedos
through a recent thermophysical model. The scientific results are discussed in
the context of our current knowledge of size, shape and albedos, derived from
IRAS observations, occultation measurements and lightcurve inversion
techniques. In all cases where IRAS observations were available we confirm the
derived diameters and albedos. For the five asteroids without IRAS detections
only one was clearly detected and the radiometric results agreed with sizes
given by occultation and HST observations. Four different comets have clearly
been detected at 170 micron and two have marginal detections. The observational
results are presented to be used by thermal comet models in the future. The
nine ISOSS slews over Hale-Bopp revealed extended and asymmetric structures
related to the dust tail. We attribute the enhanced emission in post-perihelion
observations to large particles around the nucleus. The signal patterns are
indicative of a concentration of the particles in trail direction.Comment: 15 pages, 6 figures, 6 tables; Accepted for publication in Astronomy
and Astrophysic
Self-similarity of complex networks
Complex networks have been studied extensively due to their relevance to many
real systems as diverse as the World-Wide-Web (WWW), the Internet, energy
landscapes, biological and social networks
\cite{ab-review,mendes,vespignani,newman,amaral}. A large number of real
networks are called ``scale-free'' because they show a power-law distribution
of the number of links per node \cite{ab-review,barabasi1999,faloutsos}.
However, it is widely believed that complex networks are not {\it length-scale}
invariant or self-similar. This conclusion originates from the ``small-world''
property of these networks, which implies that the number of nodes increases
exponentially with the ``diameter'' of the network
\cite{erdos,bollobas,milgram,watts}, rather than the power-law relation
expected for a self-similar structure. Nevertheless, here we present a novel
approach to the analysis of such networks, revealing that their structure is
indeed self-similar. This result is achieved by the application of a
renormalization procedure which coarse-grains the system into boxes containing
nodes within a given "size". Concurrently, we identify a power-law relation
between the number of boxes needed to cover the network and the size of the box
defining a finite self-similar exponent. These fundamental properties, which
are shown for the WWW, social, cellular and protein-protein interaction
networks, help to understand the emergence of the scale-free property in
complex networks. They suggest a common self-organization dynamics of diverse
networks at different scales into a critical state and in turn bring together
previously unrelated fields: the statistical physics of complex networks with
renormalization group, fractals and critical phenomena.Comment: 28 pages, 12 figures, more informations at http://www.jamlab.or
Volume terms for charged colloids: a grand-canonical treatment
We present a study of thermodynamic properties of suspensions of charged
colloids on the basis of linear Poisson-Boltzmann theory. We calculate the
effective Hamiltonian of the colloids by integrating out the ionic degrees of
freedom grand-canonically. This procedure not only yields the well-known
pairwise screened-Coulomb interaction between the colloids, but also additional
volume terms which affect the phase behavior and the thermodynamic properties
such as the osmotic pressure. These calculations are greatly facilitated by the
grand-canonical character of our treatment of the ions, and allow for
relatively fast computations compared to earlier studies in the canonical
ensemble. Moreover, the present derivation of the volume terms are relatively
simple, make a direct connection with Donnan equilibrium, yield an explicit
expression for the effective screening constant, and allow for extensions to
include, for instance, nonlinear effects.Comment: 16 pages, 6 figures, published in Phys.Rev.
Impact of shortened crop rotation of oilseed rape on soil and rhizosphere microbial diversity in relation to yield decline
Oilseed rape (OSR) grown in monoculture shows a decline in yield relative to virgin OSR of up to 25%, but the mechanisms responsible are unknown. A long term field experiment of OSR grown in a range of rotations with wheat was used to determine whether shifts in fungal and bacterial populations of the rhizosphere and bulk soil were associated with the development of OSR yield decline. The communities of fungi and bacteria in the rhizosphere and bulk soil from the field experiment were profiled using terminal restriction fragment length polymorphism (TRFLP) and sequencing of cloned internal transcribed spacer regions and 16S rRNA genes, respectively. OSR cropping frequency had no effect on rhizosphere bacterial communities. However, the rhizosphere fungal communities from continuously grown OSR were significantly different to those from other rotations. This was due primarily to an increase in abundance of two fungi which showed 100% and 95% DNA identity to the plant pathogens Olpidium brassicae and Pyrenochaeta lycopersici, respectively. Real-time PCR confirmed that there was significantly more of these fungi in the continuously grown OSR than the other rotations. These two fungi were isolated from the field and used to inoculate OSR and Brassica oleracea grown under controlled conditions in a glasshouse to determine their effect on yield. At high doses, Olpidium brassicae reduced top growth and root biomass in seedlings and reduced branching and subsequent pod and seed production. Pyrenochaeta sp. formed lesions on the roots of seedlings, and at high doses delayed flowering and had a negative impact on seed quantity and quality
How to apply the 20 + 2-planes method for identification of 65 fetal abnormalities during routine second-trimester fetal ultrasound examination
Outbursts of EX Hydrae: mass-transfer events or disc instabilities?
We present the 45-yr record of EX Hya's lightcurve and discuss the
characteristics of its 15 observed outbursts. We then concentrate on the 1998
outburst, reporting the first outburst X-ray observations. We discover an X-ray
beat-cycle modulation, indicating that an enhanced accretion stream couples
directly with the magnetosphere in outburst, confirming our previous
prediction. Optical eclipse profiles late in outburst show that the visible
light is dominated by an enhanced mass-transfer stream overflowing the
accretion disc. We are uncertain whether the enhanced mass transfer is
triggered by a disc instability, or by some other cause. While in outburst, EX
Hya shows some of the characteristics of SW Sex stars.Comment: To appear in MNRAS (8 pages; 9 figs
Microbial differences between dental plaque and historic dental calculus are related to oral biofilm maturation stage
Dental calculus, calcified oral plaque biofilm, contains microbial and host biomolecules that can be used to study historic microbiome communities and host responses. Dental calculus does not typically accumulate as much today as historically, and clinical oral microbiome research studies focus primarily on living dental plaque biofilm. However, plaque and calculus reflect different conditions of the oral biofilm, and the differences in microbial characteristics between the sample types have not yet been systematically explored. Here, we compare the microbial profiles of modern dental plaque, modern dental calculus, and historic dental calculus to establish expected differences between these substrates.- Background - Results -- Authentication of a preserved oral biofilm in calculus samples -- Dental calculus and plaque biofilm communities are distinct -- Health-associated communities of dental plaque and calculus are distinct -- Signatures of health and of disease are shared in modern and historic calculus samples -- Microbial community differences between health and disease in calculus are poorly resolved -- Absence of caries-specific microbial profiles in dental calculus -- Microbial co-exclusion patterns in plaque and calculus reflect biofilm maturity -- Microbial complexes in plaque and calculus -- Functional prediction in calculus is poorly predictive of health status -- Proteomic profiles of historic healthy site calculus -- Correlations between taxonomic, proteomic, and metabolomic profiles - Discussion - Conclusions - Materials and methods --Historic and modern calculus sample collection DNA extraction -- DNA library construction and high-throughput sequencing -- DNA sequence processing -- Genetic assessment of historic calculus sample preservation -- Genetic microbial taxonomic profiling -- Principal component analysis -- Assessment of differentially abundant taxa -- Sparse partial least squares-discriminant analysis -- Assessment of microbial co-exclusion patterns -- Gene functional categorization with SEED -- Proteomics -- Metabolomics -- Regularized canonical correlation analysi
- …
