101 research outputs found
Nonadiabatic generation of coherent phonons
The time-dependent density functional theory (TDDFT) is the leading
computationally feasible theory to treat excitations by strong electromagnetic
fields. Here the theory is applied to coherent optical phonon generation
produced by intense laser pulses. We examine the process in the crystalline
semimetal antimony (Sb), where nonadiabatic coupling is very important. This
material is of particular interest because it exhibits strong phonon coupling
and optical phonons of different symmetries can be observed. The TDDFT is able
to account for a number of qualitative features of the observed coherent
phonons, despite its unsatisfactory performance on reproducing the observed
dielectric functions of Sb. A simple dielectric model for nonadiabatic coherent
phonon generation is also examined and compared with the TDDFT calculations.Comment: 19 pages, 11 figures. This is prepared for a special issue of Journal
of Chemical Physics on the topic of nonadiabatic processe
Sub-Cycle Optical Response Caused by Dressed State with Phase-Locked Wavefunctions
The coherent interaction of light with matter imprints the phase information
of the light field on the wavefunction of the photon-dressed electronic state.
Driving electric field, together with a stable phase that is associated with
the optical probe pulses, enables the role of the dressed state in the optical
response to be investigated. We observed optical absorption strengths modulated
on a sub-cycle timescale in a GaAs quantum well in the presence of a
multi-cycle terahertz driving pulse using a near-infrared probe pulse. The
measurements were in good agreement with the analytical formula that accounts
for the optical susceptibilities caused by the dressed state of excitons, which
indicates that the output probe intensity was coherently reshaped by the
excitonic sideband emissions
Time-dependent density functional theory for strong electromagnetic fields in crystalline solids
We apply the coupled dynamics of time-dependent density functional theory and
Maxwell equations to the interaction of intense laser pulses with crystalline
silicon. As a function of electromagnetic field intensity, we see several
regions in the response. At the lowest intensities, the pulse is reflected and
transmitted in accord with the dielectric response, and the characteristics of
the energy deposition is consistent with two-photon absorption. The absorption
process begins to deviate from that at laser intensities ~ 10^13 W/cm^2, where
the energy deposited is of the order of 1 eV per atom. Changes in the
reflectivity are seen as a function of intensity. When it passes a threshold of
about 3 \times 1012 W/cm2, there is a small decrease. At higher intensities,
above 2 \times 10^13 W/cm^2, the reflectivity increases strongly. This behavior
can be understood qualitatively in a model treating the excited electron-hole
pairs as a plasma.Comment: 27 pages; 11 figure
Guardians Ad Litem as Surrogate Parents: Implication for Role Definition and Confidentiality
SALMON (Scalable Ab-initio Light–Mattersimulator for Optics and Nanoscience, http://salmon-tddft.jp) is a software package for the simulation of electron dynamics and optical properties of molecules, nanostructures, and crystalline solids based on first-principles time-dependent density functional theory. The core part of the software is the real-time, real-space calculation of the electron dynamics induced in molecules and solids by an external electric field solving the time-dependent Kohn–Sham equation. Using a weak instantaneous perturbing field, linear response properties such as polarizabilities and photoabsorptions in isolated systems and dielectric functions in periodic systems are determined. Using an optical laser pulse, the ultrafast electronic response that may be highly nonlinear in the field strength is investigated in time domain. The propagation of the laser pulse in bulk solids and thin films can also be included in the simulation via coupling the electron dynamics in many microscopic unit cells using Maxwell’s equations describing the time evolution of the electromagnetic fields. The code is efficiently parallelized so that it may describe the electron dynamics in large systems including up to a few thousand atoms. The present paper provides an overview of the capabilities of the software package showing several sample calculations. Program summary Program Title: SALMON: Scalable Ab-initio Light–Matter simulator for Optics and Nanoscience Program Files doi:http://dx.doi.org/10.17632/8pm5znxtsb.1 Licensing provisions: Apache-2.0 Programming language: Fortran 2003 Nature of problem: Electron dynamics in molecules, nanostructures, and crystalline solids induced by an external electric field is calculated based on first-principles time-dependent density functional theory. Using a weak impulsive field, linear optical properties such as polarizabilities, photoabsorptions, and dielectric functions are extracted. Using an optical laser pulse, the ultrafast electronic response that may be highly nonlinear with respect to the exciting field strength is described as well. The propagation of the laser pulse in bulk solids and thin films is considered by coupling the electron dynamics in many microscopic unit cells using Maxwell’s equations describing the time evolution of the electromagnetic field. Solution method: Electron dynamics is calculated by solving the time-dependent Kohn–Sham equation in real time and real space. For this, the electronic orbitals are discretized on a uniform Cartesian grid in three dimensions. Norm-conserving pseudopotentials are used to account for the interactions between the valence electrons and the ionic cores. Grid spacings in real space and time, typically 0.02 nm and 1 as respectively, determine the spatial and temporal resolutions of the simulation results. In most calculations, the ground state is first calculated by solving the static Kohn–Sham equation, in order to prepare the initial conditions. The orbitals are evolved in time with an explicit integration algorithm such as a truncated Taylor expansion of the evolution operator, together with a predictor–corrector step when necessary. For the propagation of the laser pulse in a bulk solid, Maxwell’s equations are solved using a finite-difference scheme. By this, the electric field of the laser pulse and the electron dynamics in many microscopic unit cells of the crystalline solid are coupled in a multiscale framework
Infuence of the year and HMW glutenin subunits on end-use quality predictors if bread wheat waxy lines
The effects of environment and the high molecular weight glutenins on some quality properties (sedimentation volume, % protein content, and starch pasting viscosity) of bread wheat mutant waxy lines were evaluated. Thirty-eight 100% amylose-free F 2 derived F 6 and F 7 lines were used. The results indicated that the environment did not influence sedimentation volume, mixograph parameters and starch viscosity parameters of waxy flour. Variation in the % protein content was determined mainly by the environment. The sedimentation volume and the mixograph peak development time were influenced by the variation at over expression of Bx7 and the mixograph peak development time was influenced by the Glu-D1 locus. One starch viscosity parameter, time to peak viscosity, was influenced by variation at the Glu-A1 locus. This parameter is significantly lower in the waxy lines than the parent line, which shows the influence of the waxy loci. No significant correlation was observed for sedimentation volume, mixograph parameters, protein content and viscosity parameters of waxy line
- …