163 research outputs found

    Existence of families of spacetimes with a Newtonian limit

    Get PDF
    J\"urgen Ehlers developed \emph{frame theory} to better understand the relationship between general relativity and Newtonian gravity. Frame theory contains a parameter λ\lambda, which can be thought of as 1/c21/c^2, where cc is the speed of light. By construction, frame theory is equivalent to general relativity for λ>0\lambda >0, and reduces to Newtonian gravity for λ=0\lambda =0. Moreover, by setting \ep=\sqrt{\lambda}, frame theory provides a framework to study the Newtonian limit \ep \searrow 0 (i.e. cc\to \infty). A number of ideas relating to frame theory that were introduced by J\"urgen have subsequently found important applications to the rigorous study of both the Newtonian limit and post-Newtonian expansions. In this article, we review frame theory and discuss, in a non-technical fashion, some of the rigorous results on the Newtonian limit and post-Newtonian expansions that have followed from J\"urgen's work

    A Metric for Gradient RG Flow of the Worldsheet Sigma Model Beyond First Order

    Full text link
    Tseytlin has recently proposed that an action functional exists whose gradient generates to all orders in perturbation theory the Renormalization Group (RG) flow of the target space metric in the worldsheet sigma model. The gradient is defined with respect to a metric on the space of coupling constants which is explicitly known only to leading order in perturbation theory, but at that order is positive semi-definite, as follows from Perelman's work on the Ricci flow. This gives rise to a monotonicity formula for the flow which is expected to fail only if the beta function perturbation series fails to converge, which can happen if curvatures or their derivatives grow large. We test the validity of the monotonicity formula at next-to-leading order in perturbation theory by explicitly computing the second-order terms in the metric on the space of coupling constants. At this order, this metric is found not to be positive semi-definite. In situations where this might spoil monotonicity, derivatives of curvature become large enough for higher order perturbative corrections to be significant.Comment: 15 pages; Erroneous sentence in footnote 14 removed; this version therefore supersedes the published version (our thanks to Dezhong Chen for the correction

    A rigorous formulation of the cosmological Newtonian limit without averaging

    Full text link
    We prove the existence of a large class of one-parameter families of cosmological solutions to the Einstein-Euler equations that have a Newtonian limit. This class includes solutions that represent a finite, but otherwise arbitrary, number of compact fluid bodies. These solutions provide exact cosmological models that admit Newtonian limits but, are not, either implicitly or explicitly, averaged

    A Gradient Flow for Worldsheet Nonlinear Sigma Models

    Full text link
    We discuss certain recent mathematical advances, mainly due to Perelman, in the theory of Ricci flows and their relevance for renormalization group (RG) flows. We consider nonlinear sigma models with closed target manifolds supporting a Riemannian metric, dilaton, and 2-form B-field. By generalizing recent mathematical results to incorporate the B-field and by decoupling the dilaton, we are able to describe the 1-loop beta-functions of the metric and B-field as the components of the gradient of a potential functional on the space of coupling constants. We emphasize a special choice of diffeomorphism gauge generated by the lowest eigenfunction of a certain Schrodinger operator whose potential and kinetic terms evolve along the flow. With this choice, the potential functional is the corresponding lowest eigenvalue, and gives the order alpha' correction to the Weyl anomaly at fixed points of (g(t),B(t)). Since the lowest eigenvalue is monotonic along the flow and reproduces the Weyl anomaly at fixed points, it accords with the c-theorem for flows that remain always in the first-order regime. We compute the Hessian of the lowest eigenvalue functional and use it to discuss the linear stability of points where the 1-loop beta-functions vanish, such as flat tori and K3 manifolds.Comment: Accepted version for publication. Citations added to Friedan and to Fateev, Onofri, and Zamolodchikov. Introduction modified slightly to discuss these citations. 25 pages, LaTe

    On all possible static spherically symmetric EYM solitons and black holes

    Get PDF
    We prove local existence and uniqueness of static spherically symmetric solutions of the Einstein-Yang-Mills equations for any action of the rotation group (or SU(2)) by automorphisms of a principal bundle over space-time whose structure group is a compact semisimple Lie group G. These actions are characterized by a vector in the Cartan subalgebra of g and are called regular if the vector lies in the interior of a Weyl chamber. In the irregular cases (the majority for larger gauge groups) the boundary value problem that results for possible asymptotically flat soliton or black hole solutions is more complicated than in the previously discussed regular cases. In particular, there is no longer a gauge choice possible in general so that the Yang-Mills potential can be given by just real-valued functions. We prove the local existence of regular solutions near the singularities of the system at the center, the black hole horizon, and at infinity, establish the parameters that characterize these local solutions, and discuss the set of possible actions and the numerical methods necessary to search for global solutions. That some special global solutions exist is easily derived from the fact that su(2) is a subalgebra of any compact semisimple Lie algebra. But the set of less trivial global solutions remains to be explored.Comment: 26 pages, 2 figures, LaTeX, misprints corrected, 1 reference adde

    Cosmological post-Newtonian expansions to arbitrary order

    Full text link
    We prove the existence of a large class of one parameter families of solutions to the Einstein-Euler equations that depend on the singular parameter \ep=v_T/c (0<\ep < \ep_0), where cc is the speed of light, and vTv_T is a typical speed of the gravitating fluid. These solutions are shown to exist on a common spacetime slab M\cong [0,T)\times \Tbb^3, and converge as \ep \searrow 0 to a solution of the cosmological Poisson-Euler equations of Newtonian gravity. Moreover, we establish that these solutions can be expanded in the parameter \ep to any specified order with expansion coefficients that satisfy \ep-independent (nonlocal) symmetric hyperbolic equations

    Irreversibility of World-sheet Renormalization Group Flow

    Full text link
    We demonstrate the irreversibility of a wide class of world-sheet renormalization group (RG) flows to first order in α\alpha' in string theory. Our techniques draw on the mathematics of Ricci flows, adapted to asymptotically flat target manifolds. In the case of somewhere-negative scalar curvature (of the target space), we give a proof by constructing an entropy that increases monotonically along the flow, based on Perelman's Ricci flow entropy. One consequence is the absence of periodic solutions, and we are able to give a second, direct proof of this. If the scalar curvature is everywhere positive, we instead construct a regularized volume to provide an entropy for the flow. Our results are, in a sense, the analogue of Zamolodchikov's cc-theorem for world-sheet RG flows on noncompact spacetimes (though our entropy is not the Zamolodchikov CC-function).Comment: Minor changes, added one citation, version accepted for publicatio
    corecore