278 research outputs found
Wie wirken "effektive Mikroorganismen" auf EM-Bokashi in der Bananenproduktion (Musa ssp.)?
In Costa Rica, ‘effective microorganisms’ (EM) are used to produce organic fertiliser in the form of Bokashi. This study aimed at investigating the effects of EM addition on the decomposition of banana residues during Bokashi production in comparison to different non-EM control variants (Bokashi produced with: W= water, M= molasses as an EM additive, EMst= sterilized EM). Furthermore, the effects of the above mentioned Bokashi variants on the growth of young banana plants and their effects on the secondary root growth of adult banana plants were evaluated. In comparison to non-EM controls, no increasing effects of EM on the N-mineralization of banana material were observed. All nutrient concentrations were similar for all treatments as well as the weight loss of approximately 77.9 %. The ergosterol concentration was significantly highest in EM Bokashi (77 µg g-1 dry soil), whereas it was lowest in EMst (29 µg g-1 dry soil). Application of all Bokashi variants significantly increased shoot growth of young banana plants under greenhouse conditions compared to a control grown in unamended soil. EM Bokashi and Bokashi produced with molasses significantly decreased the number of root nematodes under greenhouse conditions if compared to the control (nematodes per 100 g: C = 254; W = 143; EMst = 143; M = 67; EM = 38). Furthermore, EM Bokashi increased secondary root growth of adult banana plants in the field (186.7 g) compared to non-composted fresh banana leaves (134.6 g) and a control without mulch application (147 g)
Mechanism of Carrier Generation in Poly(phenylene vinylene): Transient Photoconductivity and Photoluminescence at High Electric Fields
The carrier generation mechanism in poly(phenylene vinylene), is addressed by studying the transient photoconductivity and the photoluminescence as a function of the external electric field E in samples oriented by tensile drawing. The transient photocurrent is proportional to E at low fields, but increases nonlinearly for E>105 V/cm. The field at which the photoconductivity becomes nonlinear (the onset field, E0pc) depends on the degree of alignment: the higher the draw ratio, the lower E0pc. The dependence of the photocurrent on E is similar to the dependence of the dark current on E; both imply a field-dependent mobility (rather than field-dependent carrier generation). The onset field for the nonlinear photoconductivity is, however, different from the onset field for quenching the luminescence (E0pl). Thus, contrary to expectations for strongly bound neutral excitons as the elementary excitations, the high-field increase in photocurrent and the corresponding decrease in photoluminescence are not proportional, indicating that field-induced carrier generation is not significant
High Potential of a Transposon mPing as a Marker System in japonica × japonica Cross in Rice
Although quantitative traits loci (QTL) analysis has been widely performed to isolate agronomically important genes, it has been difficult to obtain molecular markers between individuals with similar phenotypes (assortative mating). Recently, the miniature inverted-repeat transposable element mPing was shown to be active in the japonica strain Gimbozu EG4 where it had accumulated more than 1000 copies. In contrast, most other japonicas, including Nipponbare, have 50 or fewer mPing insertions in their genome. In this study we have exploited the polymorphism of mPing insertion sites to generate 150 PCR markers in a cross between the closely related japonicas, Nipponbare × Gimbozu (EG4). These new markers were distributed in genic regions of the whole genome and showed significantly higher polymorphism (150 of 183) than all other molecular markers tested including short sequence repeat markers (46 of 661). In addition, we performed QTL analysis with these markers using recombinant inbred lines derived from Nipponbare × Gimbozu EG4, and successfully mapped a locus involved in heading date on the short arm of chromosome 6. Moreover, we could easily map two novel loci involved in the culm length on the short arms of chromosomes 3 and 10
Engineering Genetically Encoded Nanosensors for Real-Time In Vivo Measurements of Citrate Concentrations
Citrate is an intermediate in catabolic as well as biosynthetic pathways and is an important regulatory molecule in the control of glycolysis and lipid metabolism. Mass spectrometric and NMR based metabolomics allow measuring citrate concentrations, but only with limited spatial and temporal resolution. Methods are so far lacking to monitor citrate levels in real-time in-vivo. Here, we present a series of genetically encoded citrate sensors based on Förster resonance energy transfer (FRET). We screened databases for citrate-binding proteins and tested three candidates in vitro. The citrate binding domain of the Klebsiella pneumoniae histidine sensor kinase CitA, inserted between the FRET pair Venus/CFP, yielded a sensor highly specific for citrate. We optimized the peptide linkers to achieve maximal FRET change upon citrate binding. By modifying residues in the citrate binding pocket, we were able to construct seven sensors with different affinities spanning a concentration range of three orders of magnitude without losing specificity. In a first in vivo application we show that E. coli maintains the capacity to take up glucose or acetate within seconds even after long-term starvation
Determining the neurotransmitter concentration profile at active synapses
Establishing the temporal and concentration profiles of neurotransmitters during synaptic release is an essential step towards understanding the basic properties of inter-neuronal communication in the central nervous system. A variety of ingenious attempts has been made to gain insights into this process, but the general inaccessibility of central synapses, intrinsic limitations of the techniques used, and natural variety of different synaptic environments have hindered a comprehensive description of this fundamental phenomenon. Here, we describe a number of experimental and theoretical findings that has been instrumental for advancing our knowledge of various features of neurotransmitter release, as well as newly developed tools that could overcome some limits of traditional pharmacological approaches and bring new impetus to the description of the complex mechanisms of synaptic transmission
Myosin heavy chain and physiological adaptation of the rat diaphragm in elastase-induced emphysema
BACKGROUND: Several physiological adaptations occur in the respiratory muscles in rodent models of elastase-induced emphysema. Although the contractile properties of the diaphragm are altered in a way that suggests expression of slower isoforms of myosin heavy chain (MHC), it has been difficult to demonstrate a shift in MHCs in an animal model that corresponds to the shift toward slower MHCs seen in human emphysema. METHODS: We sought to identify MHC and corresponding physiological changes in the diaphragms of rats with elastase-induced emphysema. Nine rats with emphysema and 11 control rats were studied 10 months after instillation with elastase. MHC isoform composition was determined by both reverse transcriptase polymerase chain reaction (RT-PCR) and immunocytochemistry by using specific probes able to identify all known adult isoforms. Physiological adaptation was studied on diaphragm strips stimulated in vitro. RESULTS: In addition to confirming that emphysematous diaphragm has a decreased fatigability, we identified a significantly longer time-to-peak-tension (63.9 ± 2.7 ms versus 53.9 ± 2.4 ms). At both the RNA (RT-PCR) and protein (immunocytochemistry) levels, we found a significant decrease in the fastest, MHC isoform (IIb) in emphysema. CONCLUSION: This is the first demonstration of MHC shifts and corresponding physiological changes in the diaphragm in an animal model of emphysema. It is established that rodent emphysema, like human emphysema, does result in a physiologically significant shift toward slower diaphragmatic MHC isoforms. In the rat, this occurs at the faster end of the MHC spectrum than in humans
Visualization of Glutamine Transporter Activities in Living Cells Using Genetically Encoded Glutamine Sensors
Glutamine plays a central role in the metabolism of critical biological molecules such as amino acids, proteins, neurotransmitters, and glutathione. Since glutamine metabolism is regulated through multiple enzymes and transporters, the cellular glutamine concentration is expected to be temporally dynamic. Moreover, differentiation in glutamine metabolism between cell types in the same tissue (e.g. neuronal and glial cells) is often crucial for the proper function of the tissue as a whole, yet assessing cell-type specific activities of transporters and enzymes in such heterogenic tissue by physical fractionation is extremely challenging. Therefore, a method of reporting glutamine dynamics at the cellular level is highly desirable. Genetically encoded sensors can be targeted to a specific cell type, hence addressing this knowledge gap. Here we report the development of Föster Resonance Energy Transfer (FRET) glutamine sensors based on improved cyan and yellow fluorescent proteins, monomeric Teal Fluorescent Protein (mTFP)1 and venus. These sensors were found to be specific to glutamine, and stable to pH-changes within a physiological range. Using cos7 cells expressing the human glutamine transporter ASCT2 as a model, we demonstrate that the properties of the glutamine transporter can easily be analyzed with these sensors. The range of glutamine concentration change in a given cell can also be estimated using sensors with different affinities. Moreover, the mTFP1-venus FRET pair can be duplexed with another FRET pair, mAmetrine and tdTomato, opening up the possibility for real-time imaging of another molecule. These novel glutamine sensors will be useful tools to analyze specificities of glutamine metabolism at the single-cell level
- …