2,041 research outputs found

    Gate-voltage dependence of Kondo effect in a triangular quantum dot

    Full text link
    We study the conductance through a triangular triple quantum dot, which are connected to two noninteracting leads, using the numerical renormalization group (NRG). It is found that the system shows a variety of Kondo effects depending on the filling of the triangle. The SU(4) Kondo effect occurs at half-filling, and a sharp conductance dip due to a phase lapse appears in the gate-voltage dependence. Furthermore, when four electrons occupy the three sites on average, a local S=1 moment, which is caused by the Nagaoka mechanism, is induced along the triangle. The temperature dependence of the entropy and spin susceptibility of the triangle shows that this moment is screened by the conduction electrons via two separate stages at different temperatures. The two-terminal and four-terminal conductances show a clear difference at the gate voltages, where the SU(4) or the S=1 Kondo effects occurring.Comment: 4 pages, 4 figs: typos just below (4) are corrected, results are not affecte

    Electron transport through a strongly correlated monoatomic chain

    Full text link
    We study transport properties of a strongly correlated monoatomic chain coupled to metallic leads. Our system is described by tight binding Hubbard-like model in the limit of strong on-site electron-electron interactions in the wire. The equation of motion technique in the slave boson representation has been applied to obtain analytical and numerical results. Calculated linear conductance of the system shows oscillatory behavior as a function of the wire length. We have also found similar oscillations of the electron charge in the system. Moreover our results show spontaneous spin polarization in the wire. Finally, we compare our results with those for non-interacting chain and discuss their modifications due to the Coulomb interactions in the system.Comment: 7 pages, 5 figure

    The Chandra view of the Largest Quasar Lens SDSS J1029+2623

    Full text link
    We present results from Chandra observations of the cluster lens SDSS J1029+2623 at z_l=0.58, which is a gravitationally lensed quasar with the largest known image separation. We clearly detect X-ray emission both from the lensing cluster and the three lensed quasar images. The cluster has an X-ray temperature of kT = 8.1 (+2.0, -1.2) keV and bolometric luminosity of L_X = 9.6e44 erg s^-1. Its surface brightness is centered near one of the brightest cluster galaxies, and it is elongated East-West. We identify a subpeak North-West of the main peak, which is suggestive of an ongoing merger. Even so, the X-ray mass inferred from the hydrostatic equilibrium assumption appears to be consistent with the lensing mass from the Einstein radius of the system. We find significant absorption in the soft X-ray spectrum of the faintest quasar image, which can be caused by an intervening material at either the lens or source redshift. The X-ray flux ratios between the quasar images (after correcting for absorption) are in reasonable agreement with those at optical and radio wavelengths, and all the flux ratios are inconsistent with those predicted by simple mass models. This implies that microlensing effect is not significant for this system and dark matter substructure is mainly responsible for the anomalous flux ratios.Comment: 35 pages, 8 figures. Accepted for publication in Ap

    Perturbation Study of the Conductance through an Interacting Region Connected to Multi-Mode Leads

    Full text link
    We study the effects of electron correlation on transport through an interacting region connected to multi-mode leads based on the perturbation expansion with respect to the inter-electron interaction. At zero temperature the conductance defined in the Kubo formalism can be written in terms of a single-particle Green's function at the Fermi energy, and it can be mapped onto a transmission coefficient of the free quasiparticles described by an effective Hamiltonian. We apply this formulation to a two-dimensional Hubbard model of finite size connected to two noninteracting leads. We calculate the conductance in the electron-hole symmetric case using the order U2U^2 self-energy. The conductance shows several maximums in the UU dependence in some parameter regions of ty/txt_y/t_x, where txt_x (tyt_y) is the hopping matrix element in the xx- (yy-) directions. This is caused by the resonance occurring in some of the subbands, and is related with the UU dependence of the eigenvalues of the effective Hamiltonian.Comment: 17 pages, 12 figures, to be published in J.Phys.Soc.Jpn. 71(2002)No.

    The Kondo crossover in shot noise of a single quantum dot with orbital degeneracy

    Full text link
    We investigate out of equilibrium transport through an orbital Kondo system realized in a single quantum dot, described by the multiorbital impurity Anderson model. Shot noise and current are calculated up to the third order in bias voltage in the particle-hole symmetric case, using the renormalized perturbation theory. The derived expressions are asymptotically exact at low energies. The resulting Fano factor of the backscattering current FbF_b is expressed in terms of the Wilson ratio RR and the orbital degeneracy NN as Fb=1+9(N1)(R1)21+5(N1)(R1)2F_b =\frac{1 + 9(N-1)(R-1)^2}{1 + 5(N-1)(R-1)^2} at zero temperature. Then, for small Coulomb repulsions UU, we calculate the Fano factor exactly up to terms of order U5U^5, and also carry out the numerical renormalization group calculation for intermediate UU in the case of two- and four-fold degeneracy (N=2,4N=2,\,4). As UU increases, the charge fluctuation in the dot is suppressed, and the Fano factor varies rapidly from the noninteracting value Fb=1F_b=1 to the value in the Kondo limit Fb=N+8N+4F_b=\frac{N+8}{N+4}, near the crossover region UπΓU\sim \pi \Gamma, with the energy scale of the hybridization Γ\Gamma.Comment: 10 pages, 4 figure

    Transport through a finite Hubbard chain connected to reservoirs

    Full text link
    The dc conductance through a finite Hubbard chain of size N coupled to two noninteracting leads is studied at T = 0 in an electron-hole symmetric case. Assuming that the perturbation expansion in U is valid for small N (=1,2,3,...) owing to the presence of the noninteracting leads, we obtain the self-energy at \omega = 0 analytically in the real space within the second order in U. Then, we calculate the inter-site Green's function which connects the two boundaries of the chain, G_{N1}, solving the Dyson equation. The conductance can be obtained through G_{N1}, and the result shows an oscillatory behavior as a function of N. For odd N, a perfect transmission occurs independent of U. This is due to the inversion and electron-hole symmetries, and is attributed to a Kondo resonance appearing at the Fermi level. On the other hand, for even N, the conductance is a decreasing function of N and U.Comment: 11 pages, RevTeX, 6 figures, to be published in Phys. Rev. B 59 (1999

    Cosmological constant and time delay

    Get PDF
    The effect of the cosmological constant on the time delay caused by an isolated spherical mass is calculated without using the lens equation and compared to a recent observational bound on the time delay of the lensed quasar SDSS J1004+4112.Comment: 8 pages, 1 figur

    Determination of the phase shifts for interacting electrons connected to reservoirs

    Full text link
    We describe a formulation to deduce the phase shifts, which determine the ground-state properties of interacting quantum-dot systems with the inversion symmetry, from the fixed-point eigenvalues of the numerical renormalization group (NRG). Our approach does not assume the specific form of the Hamiltonian nor the electron-hole symmetry, and it is applicable to a wide class of quantum impurities connected to noninteracting leads. We apply the method to a triple dot which is described by a three-site Hubbard chain connected to two noninteracting leads, and calculate the dc conductance away from half-filling. The conductance shows the typical Kondo plateaus of Unitary limit in some regions of the gate voltages, at which the total number of electrons N_el in the three dots is odd, i.e., N_el =1, 3 and 5. In contrast, the conductance shows a wide minimum in the gate voltages corresponding to even number of electrons, N_el = 2 and 4. We also discuss the parallel conductance of the triple dot connected transversely to four leads, and show that it can be deduced from the two phase shifts defined in the two-lead case.Comment: 9 pages, 12 figures: Fig. 12 has been added to discuss T_

    The Sloan Digital Sky Survey Quasar Lens Search. I. Candidate Selection Algorithm

    Get PDF
    We present an algorithm for selecting an uniform sample of gravitationally lensed quasar candidates from low-redshift (0.6<z<2.2) quasars brighter than i=19.1 that have been spectroscopically identified in the SDSS. Our algorithm uses morphological and color selections that are intended to identify small- and large-separation lenses, respectively. Our selection algorithm only relies on parameters that the SDSS standard image processing pipeline generates, allowing easy and fast selection of lens candidates. The algorithm has been tested against simulated SDSS images, which adopt distributions of field and quasar parameters taken from the real SDSS data as input. Furthermore, we take differential reddening into account. We find that our selection algorithm is almost complete down to separations of 1'' and flux ratios of 10^-0.5. The algorithm selects both double and quadruple lenses. At a separation of 2'', doubles and quads are selected with similar completeness, and above (below) 2'' the selection of quads is better (worse) than for doubles. Our morphological selection identifies a non-negligible fraction of single quasars: To remove these we fit images of candidates with a model of two point sources and reject those with unusually small image separations and/or large magnitude differences between the two point sources. We estimate the efficiency of our selection algorithm to be at least 8% at image separations smaller than 2'', comparable to that of radio surveys. The efficiency declines as the image separation increases, because of larger contamination from stars. We also present the magnification factor of lensed images as a function of the image separation, which is needed for accurate computation of magnification bias.Comment: 15 pages, 17 figures, 4 tables, accepted for publication in A
    corecore