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ABSTRACT

Aims. The effect of the cosmological constant on the time delay caused by an isolated spherical mass is calculated.
Methods. We integrate the geodesic equations without using the lens equation.
Results. We compare our results to a recent observational bound on the time delay of the lensed quasar SDSS J1004+4112.
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1. Introduction

Time delay is one of the four classical tests of general rela-
tivity. The first experimental confirmation was made in 1968
by Shapiro, who measured a time delay of 240 µs for a (one-way)
travel-time of 10 min between Mercury and Earth. Last October
Fohlmeister et al. (2007) published a lower bound of 5.7 years to
a time delay of cosmological nature: the travel-time between the
quasar SDSS J1004+4112 and Earth is roughly 1010 years. The
lens was known to be a cluster of approximate mass 5× 1013 so-
lar masses. One month earlier Rindler & Ishak (2007) had cor-
rected the wide held believe that the cosmological constant does
not change the deflection angles of light.

While there has never been any debate in the literature about
whether the time delay does depend on the cosmological con-
stant, the controversy about whether the deflection angles de-
pend on the cosmological constant was resolved within four
months after publication of Rindler & Ishak’s work. The authors
of two previous papers that supported the independence of the
deflection angle with respect to the cosmological constant Lake
(2007) and Sereno (2007) confirmed the dependence. In his first
version of november, Sereno however finds a dependence differ-
ent from Rindler & Ishak’s. In December, Schücker (2007) pub-
lished an independent calculation confirming Rindler & Ishak’s
result. In January Sereno (2007) published a second version of
his work now agreeing with Rindler & Ishak (2007). In this work
Sereno also derived a formula for the time delay with cosmo-
logical constant. Earlier calculations of the time of flight were
published by Kerr et al. (2003) and Kagramanova et al. (2006).
We note the analysis of Bakola et al. (2007) that studies extreme
lensing by black holes including a positive cosmological con-
stant. In this paper, we compute the time delay between the most
closely-aligned images of the quasar (C and D) as a function of
the cosmological constant. We assume that the cluster is static
and spherically symmetric and that its mass dominates all other
lensing masses in the universe. The fact that there are five im-
ages of the quasar does indicate that the cluster is not perfectly
spherical.

2. The method

We consider a universe, that is empty apart from one static,
spherical, non-rotating mass M, the lens L. A source S , at rest
with respect to the lens, emits photons, which are observed at
nostra terra T , which is also assumed to be at rest. We neglect
the masses of the source and Local Group. We use polar coor-
dinates (r, θ, ϕ) centered on the lens. Because of spherical sym-
metry, the photons’ trajectory is in a plane that we take to be
θ = π/2. The angle ϕ is measured with respect to the axis de-
fined by the source, ϕS = 0. With a cosmological constant, the
gravitational field outside the mass M is given by the Kottler
metric,

dτ2 = B dt2 − B−1dr2 − r2dϕ2, (1)

θ = π/2, B = 1 − 2GM
r
− 1

3
Λr2. (2)

The source has polar coordinates (rS, 0), the Earth is at (rT, ϕT).
We define α and α′ to be the two physically measured angles
between the images and the cluster center and denote by r0 and r′0
the peri-lenses of the two light rays. We write tS and tT for the
coordinate times of flight from the source to the peri-lens and
from the peri-lens to Earth, see Fig. 1.

We assume that Λr2/3 < 9/10 in order to avoid the co-
ordinate singularity at the equator of the de Sitter sphere. We
also assume that δ := GM/r0 � 1, α � 1 and likewise for
their primed quantities, and retain only terms linear in these four
quantities. We anticipate in this approximation the expression

for α ∼
√

1 − Λr2
T/3 r0/rT. We assume that λ :=

√
Λ/3r0 � 1

and only retain terms linear in this and its primed quantity. For
the example of the quasar SDSS J1004+4112, all six quantities
are approximately 10−5.

Our aim is to compute the proper time delay ∆τ =√
B(rT) (t′T+ t′S− tT− tS) as a function of M, α, α′, rT, rS, andΛ.
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Fig. 1. A double image.

3. Integrating the geodesics

We start with the list of the non-vanishing Christoffel symbols
for the Kottler metric with θ = π/2 and denote ′ := d/dr,

Γt
tr = B′/(2B), Γr

tt = BB′/2, Γr
rr = −B′/(2B), (3)

Γr
ϕϕ = −rB, Γϕrϕ = 1/r. (4)

The geodesic equations read:

ẗ + B′/B ṫṙ = 0, (5)

r̈ +
1
2

BB′ṫ2 − 1
2

BB′ṙ2 − rBϕ̇2 = 0, (6)

ϕ̈ + 2r−1ṙϕ̇ = 0, (7)

where we denote the affine parameter by p and ˙ := d/dp. We
then obtain three first integrals:

ṫ = 1/B(r), (8)

ϕ̇ =
r0

r2
√

B(r0)
, (9)

ṙ =

⎛⎜⎜⎜⎜⎝1 − r2
0

r2

B(r)
B(r0)

⎞⎟⎟⎟⎟⎠1/2

· (10)

Eliminating the affine parameter we derive:

dϕ
dr
= ± 1

r
√

r2/r2
0 − 1

[
1 − 2GM

r
− 2GM

r0

r
r + r0

]−1/2

, (11)

dt
dr
= ±

√
B(r0)

B(r)
√

1 − r2
0/r

2

[
1 − 2GM

r
− 2GM

r0

r
r + r0

]−1/2

· (12)

Integrating Eq. (11), we obtain α ∼
√

1 − Λr2
T/3 r0/rT and

rT

rS
∼ 4GM
αα′rT

(1 − Λr2
T/3) − 1. (13)

As noticed in Schücker (2007), Eq. (13) agrees with Rindler &
Ishak’s (2007) result in the aligned case, α = α′ (to all orders in
the cosmological constant).

We now integrate Eq. (12):

tT =
√

B(r0)
∫ rT

r0

1

B(r)
√

1 − r2
0/r

2

×
[
1 − 2GM

r
− 2GM

r0

r
r + r0

]−1/2

dr

∼ r0

√
B(r0) [IT1 + δ IT2 + δ IT3 + 2 δ IT4] . (14)

We set y := r0/r, εT := r0/rT > λ,

IT1 :=
∫ 1

εT

1
y2 − λ2

dy√
1 − y2

=
1

λ
√

1 − λ2
arctanh

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ λ√
1 − λ2

√
1 − ε2T
εT

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (15)

IT2 :=
∫ 1

εT

y

y2 − λ2

dy√
1 − y2

=
1√

1 − λ2
arctanh

√
1 − ε2T
1 − λ2

, (16)

IT3 :=
∫ 1

εT

1
y2 − λ2

1
1 + y

dy√
1 − y2

=
1

2(1 − λ2)

⎡⎢⎢⎢⎢⎢⎣2
√

1 − ε2T
1 + εT

− 1√
1 − λ2

× ln

(
1 +
√

1 − λ2
√

1 − ε2T − λεT
) (

1 +
√

1 − λ2
√

1 − ε2T + λεT
)

ε2T − λ2

− 1

λ
√

1 − λ2
ln

(
1 +
√

1 − λ2
√

1 − ε2T + λεT
)

(εT − λ)(
1 +
√

1 − λ2
√

1 − ε2T − λεT
)

(εT + λ)

⎤⎥⎥⎥⎥⎥⎦, (17)

IT4 :=
∫ 1

εT

y3

(y2 − λ2)2

dy√
1 − y2

=
2 − λ2

2
√

1 − λ23
arctanh

√
1 − ε2T
1 − λ2

+
λ2

2(1 − λ2)

√
1 − ε2T
ε2T − λ2

· (18)

Taking Λ to be zero, Eq. (14) yields the correct time of flight
found in textbooks. The leading term in Λ is in the first integral
IT1 ∼ [1 + 1

3λ
2/ε2T]εT + ... and compares correctly with e.g. 17

of Kagramanova et al. (2006). However, this term cancels inside
the expression for the time delay. To compute t′T − tT, we must
subtract large numbers that are almost identical and develop the
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relevant differences of the four integrals separately. Setting x :=
α′/α ∼ r′0/r0 we have:

∆T1 := r′0
√

B(r′0)I′T1 − r0

√
B(r0)IT1 (19)

∼ GM

[
−(1/x − 1)

arctanh(λ/εT)
λ

+
1
2

(1 − x2)
εT
δ
− 1

2
(1/x2 − 1)δ

arctanh(λ/εT)
λ

]
,

∆T2 :=
√

B(r′0)I′T2 −
√

B(r0)IT2 ∼ ln x, (20)

∆T3 :=
√

B(r′0)I′T3 −
√

B(r0)IT3

∼ (1/x − 1)
arctanh(λ/εT)

λ
+ ln x

−(1/x2 − 1)δ
arctanh(λ/εT)

λ
, (21)

∆T4 :=
√

B(r′0)I′T4 −
√

B(r0)IT4 ∼ ln x. (22)

The large value of the term (1/x − 1)arctanh(λ/εT)/λ cancels
when we add the four terms:

t′T − tT ∼ ∆T1 +GM∆T2 +GM∆T3 + 2 GM∆T4

∼ GM

[
1
2

(1 − x2)
εT
δ

−3
2

(1/x2 − 1)δ
arctanh(λ/εT)

λ
− 2 ln x

]
. (23)

Finally, we write the time delay to leading order in δ, ε· and λ as,

∆τ ∼
√

1 − Λr2
T/3 GM

⎡⎢⎢⎢⎢⎢⎣1
2
α2 − α′2

1 − Λr2
T/3

rT

GM

(
1 +

rT

rS

)

−3
2

(
1 − Λ

3
r2

T

) (
1
α′2
− 1
α2

)
GM√
Λ/3 r2

T

×
⎛⎜⎜⎜⎜⎜⎝arctanh

√
Λ

3
rT + arctanh

√
Λ

3
rS

⎞⎟⎟⎟⎟⎟⎠ + 4 ln
α

α′

⎤⎥⎥⎥⎥⎥⎦· (24)

Our expression for the time delay depends on the cosmological

constant for different reasons. The overall factor
√

1 − Λr2
T/3

comes from the proper time correction on Earth and de-
creases the time delay as the cosmological constant (or the
distance between the Earth and the lens) increases. The other
Λ-dependencies are of a geometrical nature. They compete with
each other and whether the total time delay is a decreasing or
increasing function of Λ depends on the particular values of de-
flection angles and coordinate distances of source and observer
from the lens. We note however that the well-known dependence
of the physical angular distances on the cosmological constant
from the Hubble diagram is not contained in our formula. We
remove this dependence from our analysis by computing the an-
gular distances in the next section with a fixed cosmological con-
stant. For the translation from angular distances to coordinate
distances, we use one Ansatz independent ofΛ. The competition
of the geometricalΛ-dependencies is illustrated in Table 2 of the
next section. We note that for equal deflection angles, α = α′, the
time delay vanishes as expected for symmetry reasons.

Sereno’s (2007) Eq. (24) in version 2, provides the time de-
lay only if the source position is known in the absence of the

Table 1. rS from the first of Eqs. (25).

M ± 20% + − − − − + + +
α ± 10% + + − − + + − −
α′ ± 10% + + + − − − − +

rS [1025 m] 5.3 6.1 5.6 5.3 5.6 5.0 4.8 5.0
Λ[10−52 m−2] 2.2 0.7 1.5 2.2 1.5 2.8 3.4 2.8
∆τ [years] 24.1 20.3 12.8 16.1 23.6 27.7 18.7 15.1

lens. Ishak’s (2008) recent analysis contains two contributions of
the cosmological constant to the time of flight. We have shown
that the real difficulty resides however in the computation of the
difference between the two times of flight because of the in-
dicated cancelation of large terms. Therefore all contributions
must be computed.

4. SDSS J1004+4112

Consider the lensing cluster of SDSS J1004+4112 and the
quasar as source, Inada et al. (2003), Sharon et al. (2005), Ota
et al. (2006). As we have at least 4 images, the cluster cannot
be spherically symmetric. We disregard the images with small α
and consider only the images C and D with α = 10′′ ± 10% and
α′ = 5′′ ± 10%. We assume that these images are less sensi-
tive to a non-spherical inner struture of the cluster. The mass of
the cluster is M = (1 ± 0.2) × 1044 kg. The cluster has a red-
shift of zL = 0.68. A numerical integration of the Cold Dark
Matter model with Λ = 1.5 × 10−52 m−2 yields an area distance
dL = 7.0 × 1025 m as seen from Earth. This area distance co-
incides with the coordinate distance rT. For the quasar, we have
zS = 1.734 yielding the area distance dS = 13.7 × 1025 m. Due
to the magnification of the quasar by the cluster, the translation
from its area distance to its coordinate distance is ambiguous:
it depends on which image is used and in the case of alignment
of source, lens, and observer, the area distance can even be zero.
Therefore we use the area distance in absence of the lens, M = 0.
Then remain two possibilities, Λ � 0 and Λ = 0. We use both
Ansätze,

dS =
rT + rS√
1 − Λr2

S/3
or dS = rT + rS. (25)

The first expression gives rS = 5.3×1025 m,Λ = 2.2×10−52 m−2

from Eq. (13) and ∆τ = 20.1 years. The second gives rS = 6.7 ×
1025 m, Λ = 2.7 × 10−52 m−2 and ∆τ = 17.1 years. The errors
in these quantities arise from errors in M, α, and α′, and can be
read from Tables 1 and 2. Table 1 summarizes the values of rS
for the first of Eqs. (25), Λ, and ∆τ at the corners of the error
box in M, α and α′. Table 2 summarizes the values of Λ and ∆τ
for rS = dS − rT = 6.7 × 1025 m at the corners of the error box.
Minimal and maximal values are are indicated in bold face from
which we obtain:

Λ = (2.0 ± 1.4) × 10−52 m−2 or (2.4 ± 1.5) × 10−52 m−2, (26)

∆τ = (20.2 ± 7.5) years or (18.1 ± 6.1) years. (27)

It is encouraging to note that both Ansätze yield similar re-
sults both for the cosmological constant and the time delay,
and that both constraints shown in Eq. (26) on the cosmological
constant are compatible with the present observational bounds,
Λ = (1.36±0.3)×10−52 m−2, whose central value we have used,
without variation, to translate redshifts into area distances. Both
constraints shown in Eq. (27) on the time delay are compatible
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Table 2. rS = dS − rT = 6.7 × 1025 m.

M ± 20% + − − − − + + +
α ± 10% + + − − + + − −
α′ ± 10% + + + − − − − +

Λ[10−52 m−2] 2.7 0.9 1.9 2.7 1.9 2.3 3.9 3.3
∆τ [years] 21.8 19.6 12.0 14.6 22.0 24.2 16.0 13.3

with the observational lower bound of ∆τ > 5.7 years measured
by Fohlmeister et al. (2007) ∆τ > 5.7 years.

5. Conclusions

Our computation is based on three tentative assumptions:

– The sphericity of the cluster.
– The velocity of observer and source with respect to the lens

is negligible.
– All masses apart that of the cluster are negligible.

The first assumption raises an old question about whether a
spherical cow can be useful. To go beyond this assumption re-
quires consideration of multiple scattering of the photon off sub-
constituents of the cluster. Calculating angles, time delays, and
the number of images from the density profile of the cluster and
its dark matter halo is a well developed art, e.g. Schneider et al.
(1992). Applying the method to SDSS J1004+4112, Kawano &
Oguri (2006) predict a time delay between images C and D of up
to 10 years. However including a positive cosmological constant
in their analysis is not straightforward.

Khriplovich & Pomeransky (2008) point out that if the Earth
is taken comoving with respect to the exponentially expanding
de Sitter space then the effect of the cosmological constant on
the deflection cancels.

Going beyond the third idealisation necessitates an interpo-
lating solution, which embeds many static, curved Kottler solu-
tions into the ambient expanding, flat Friedmann solution. This
is a long standing problem, to which Einstein & Straus (1946)

and Schücking (1954) have contributed an unstable solution, see
Krasiński (1997). A first qualitative assessment based on this so-
lution is given in Sect. 3 of Ishak et al. (2007): the other clusters
in the universe weaken the effect of the cosmological constant
and increase upper bounds on the cosmological constant from
certain lenses by two orders of magnitude.

We conclude that we agree with previous authors that lensing
and time delay on a cosmological scale is a subject certainly
worthy of study and that our theoretical understanding of it is
incomplete. For the older physicists among us however, a time
delay of 10 or 20 years is bad news. By the time the expected
signal in image D arrives, we might already be gone.

Note added in proof Ishak (2008) has extended the analysis of how
the embedding of Kottler’s solution into Friedmann’s solution modifies
light deflection to include the time of flight. We thank him for having
kindly sent us his work.
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