219 research outputs found

    Commissioning of the vacuum system of the KATRIN Main Spectrometer

    Get PDF
    The KATRIN experiment will probe the neutrino mass by measuring the beta-electron energy spectrum near the endpoint of tritium beta-decay. An integral energy analysis will be performed by an electro-static spectrometer (Main Spectrometer), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m^3, and a complex inner electrode system with about 120000 individual parts. The strong magnetic field that guides the beta-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. A system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300{\deg}C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 10^{-11} mbar range. It is demonstrated that the performance of the system is already close to these stringent functional requirements for the KATRIN experiment, which will start at the end of 2016.Comment: submitted for publication in JINST, 39 pages, 15 figure

    Colloquy

    Get PDF
    Webster\u27s Dictionary defines colloquy as mutual discourse. Readers are encouraged to submit additions, corrections, and comments about earlier articles appearing in Word Ways. Comments received at least one month prior to publication of an issue will appear in that issue

    Re-establishing the ‘outsiders’: English press coverage of the 2015 FIFA Women’s World Cup

    Get PDF
    In 2015, the England Women’s national football team finished third at the Women’s World Cup in Canada. Alongside the establishment of the Women’s Super League in 2011, the success of the women’s team posed a striking contrast to the recent failures of the England men’s team and in doing so presented a timely opportunity to examine the negotiation of hegemonic discourses on gender, sport and football. Drawing upon an ‘established-outsider’ approach, this article examines how, in newspaper coverage of the England women’s team, gendered constructions revealed processes of alteration, assimilation and resistance. Rather than suggesting that ‘established’ discourses assume a normative connection between masculinity and football, the findings reveal how gendered ‘boundaries’ were both challenged and protected in newspaper coverage. Despite their success, the discursive positioning of the women’s team as ‘outsiders’, served to (re)establish men’s football as superior, culturally salient and ‘better’ than the women’s team/game. Accordingly, we contend that attempts to build and, in many instances, rediscover the history of women’s football, can be used to challenge established cultural representations that draw exclusively from the history of the men’s game. In such instances, the 2015 Women’s World Cup provides a historical moment from which the women’s game can be relocated in a context of popular culture

    Anisotropic strain and phonon deformation potentials in GaN

    Get PDF
    We report optical phonon frequency studies in anisotropically strained c-plane- and a-plane-oriented GaN films by generalized infrared spectroscopic ellipsometry and Raman scattering spectroscopy. The anisotropic strain in the films is obtained from high-resolution x-ray diffraction measurements. Experimental evidence for splitting of the GaN E1(TO), E1(LO), and E2 phonons under anisotropic strain in the basal plane is presented, and their phonon deformation potentials cE1(TO) , cE1(LO) , and cE2 are determined. A distinct correlation between anisotropic strain and the A1(TO) and E1(LO) frequencies of a-plane GaN films reveals theaA1TO, bA1TO, aE1LO, andbE1LO phonon deformation potentials. The aA1TO and bA1TOaA1TO and aE1LO phonon deformation potentials agree well with recently reported theoretical estimations [J.-M. Wagner and F. Bechstedt, Phys. Rev. B 66, 115202 (2002)], while bA1TO and bE1LO are found to be significantly larger than the theoretical values. A discussion of the observed differences is presented

    Solving a Coupled Set of Truncated QCD Dyson-Schwinger Equations

    Get PDF
    Truncated Dyson-Schwinger equations represent finite subsets of the equations of motion for Green's functions. Solutions to these non-linear integral equations can account for non-perturbative correlations. A closed set of coupled Dyson-Schwinger equations for the propagators of gluons and ghosts in Landau gauge QCD is obtained by neglecting all contributions from irreducible 4-point correlations and by implementing the Slavnov-Taylor identities for the 3-point vertex functions. We solve this coupled set in an one-dimensional approximation which allows for an analytic infrared expansion necessary to obtain numerically stable results. This technique, which was also used in our previous solution of the gluon Dyson-Schwinger equation in the Mandelstam approximation, is here extended to solve the coupled set of integral equations for the propagators of gluons and ghosts simultaneously. In particular, the gluon propagator is shown to vanish for small spacelike momenta whereas the previoulsy neglected ghost propagator is found to be enhanced in the infrared. The running coupling of the non-perturbative subtraction scheme approaches an infrared stable fixed point at a critical value of the coupling, alpha_c approximately 9.5.Comment: 23 pages, 6 figures, LaTeX2

    First transmission of electrons and ions through the KATRIN beamline

    Get PDF
    The Karlsruhe Tritium Neutrino (KATRIN) experiment is a large-scale effort to probe the absolute neutrino mass scale with a sensitivity of 0.2 eV (90% confidence level), via a precise measurement of the endpoint spectrum of tritium β-decay. This work documents several KATRIN commissioning milestones: the complete assembly of the experimental beamline, the successful transmission of electrons from three sources through the beamline to the primary detector, and tests of ion transport and retention. In the First Light commissioning campaign of autumn 2016, photoelectrons were generated at the rear wall and ions were created by a dedicated ion source attached to the rear section; in July 2017, gaseous 83mKr was injected into the KATRIN source section, and a condensed 83mKr source was deployed in the transport section. In this paper we describe the technical details of the apparatus and the configuration for each measurement, and give first results on source and system performance. We have successfully achieved transmission from all four sources, established system stability, and characterized many aspects of the apparatus

    The KATRIN superconducting magnets: overview and first performance results

    Get PDF
    The KATRIN experiment aims for the determination of the effective electron anti-neutrino mass from the tritium beta-decay with an unprecedented sub-eV sensitivity. The strong magnetic fields, designed for up to 6 T, adiabatically guide β-electrons from the source to the detector within a magnetic flux of 191 Tcm2. A chain of ten single solenoid magnets and two larger superconducting magnet systems have been designed, constructed, and installed in the 70-m-long KATRIN beam line. The beam diameter for the magnetic flux varies from 0.064 m to 9 m, depending on the magnetic flux density along the beam line. Two transport and tritium pumping sections are assembled with chicane beam tubes to avoid direct "line-of-sight" molecular beaming effect of gaseous tritium molecules into the next beam sections. The sophisticated beam alignment has been successfully cross-checked by electron sources. In addition, magnet safety systems were developed to protect the complex magnet systems against coil quenches or other system failures. The main functionality of the magnet safety systems has been successfully tested with the two large magnet systems. The complete chain of the magnets was operated for several weeks at 70% of the design fields for the first test measurements with radioactive krypton gas. The stability of the magnetic fields of the source magnets has been shown to be better than 0.01% per month at 70% of the design fields. This paper gives an overview of the KATRIN superconducting magnets and reports on the first performance results of the magnets
    corecore